Hello,大家好,很久没有更新过关于Kubernetes相关的文章了,之前我有写过一篇跨VPC搭建Kubernetes集群,现在看来,还是太肤浅了,打算重新整理一下,作为一个Java开发,觉得还是很有必要。
这里需要说明一下,为什么不使用LVS,原因是因为我是用Tencent Cloud竞价服务器来搭建,云主机的HAVIP不支持LVS的DR模式,因为DR模式是通过修改目标请求MAC地址实现的,而在目标机器收到请求后需要ARP欺骗,也就是需要将VIP绑定到lo回环网卡上,并且需要抑制ARP解析,这打破了云厂商私有网络的规则,这是第一;第二,NAT模式在内网环境中也有很多的限制和坑,我这里根据自己的理解分析一下,首先说一下网络NAT原理,然后说一下LVS中NAT模式。
-
NAT的实现原理:
当一个请求需要访问其他网段的IP时,请求首先会在局域网中查找当前请求目标IP的MAC地址,因为是其他网段,所以肯定找不到,这个时候请求会发送给网关
表示由网关将请求代为转发出去,网关会将该请求的源IP改为网关IP,该操作称为SNAT,并把请求转发给其他网关,直到到达目标服务器,当请求响应时,目标服务器会将目标IP及源IP互换,当响应到达网关,网关会查找这个请求是否是自己转换出去的
如果是,则将目标地址改为当前局域网中真实服务器地址,该操作称为DNAT。 -
LVS中NAT模式的实现原理
前提:NAT模式需要两块网卡、Real Server的网关需要指定Director Server
假如目前的架构是一台Director Server和后端三台Real Server,Director机器需要有两个IP,一个对外提供服务的VIP,一个对内互通的局域网DIP,当客户端发送一个请求到VIP,首先Director会通过负载均衡算法从RS列表中选出一个Real Server,然后将请求的目标IP改为RS的真实RIP,该操作称为DNAT,RS正常处理请求,响应则将请求的目标IP源IP互换,然而请求的源IP(也就是响应的目标IP)和RS所处不在一个网段,所以这个时候需要指定RS服务器的网关为Director,响应请求经过Director,将响应的源IP改为VIP,这个操作称为SNAT,最后将请求响应回去。
Keepalived安装及配置
关于Keepalived我就不做过多解释,以免我说的不够全面,简单的说就是为负载均衡器做主备切换的,其核心实现是通过VRRP协议实现VIP的自动漂移。
安装Keepalived
这里使用最简单便捷的安装方式yum
yum install -y keepalived
这样就安装好了Keepalived,我们可以通过rpm -ql keepalived
查看安装了哪些文件
配置
keepalived配置文件
! Configuration File for keepalived
global_defs { # 全局定义
notification_email {
acassen@firewall.loc
failover@firewall.loc
sysadmin@firewall.loc
}
notification_email_from Alexandre.Cassen@firewall.loc
smtp_server 192.168.200.1
smtp_connect_timeout 30
router_id lb01 # keepalived的路由ID,在局域网中唯一
vrrp_skip_check_adv_addr
vrrp_strict
vrrp_garp_interval 0
vrrp_gna_interval 0
}
# vrrp实例名称,在同一个配置文件中唯一,同一个集群(主备)之间保持一致
vrrp_instance VI_1 {
state MASTER # 状态,大写的,主、被 MASTER BACKUP
interface eth0 # 绑定的网卡
virtual_router_id 51 # 在同一组主备集群中保持一致,在同一个配置文件中唯一
priority 100 # 优先级 主备之前相差50即可
advert_int 1 # 心跳间隔 单位秒
authentication { # 认证
auth_type PASS # 认证类型,简单密码认证
auth_pass 1111 # 密码
}
virtual_ipaddress { # VIP 虚拟IP
192.168.123.242/28 dev eth0 label eth0:0
# 192.168.200.16
# 192.168.200.17
# 192.168.200.18
}
}
# 定义一个VIP服务,指定虚拟IP监听的端口
virtual_server 192.168.123.242 8443 {
delay_loop 6 # 一分钟内检查几次后端服务
lb_algo rr # 负载均衡算法,rr表示轮询 或者lvs_sched
lb_kind NAT # 模式,DR NAT TUN
nat_mask 255.255.255.0 # VIP的子网掩码
persistence_timeout 50 # 会话保持事件
protocol TCP # 协议
# 后端真实服务器
real_server 192.168.201.100 443 {
weight 1 # 权重
SSL_GET { # 健康检查的方式 SSL_GET HTTP_GET TCP_CHECK
url {
path /
digest ff20ad2481f97b1754ef3e12ecd3a9cc
}
url {
path /mrtg/
digest 9b3a0c85a887a256d6939da88aabd8cd
}
connect_timeout 3
retry 3
delay_before_retry 3
}
}
}
virtual_server 10.10.10.2 1358 {
delay_loop 6
lb_algo rr
lb_kind NAT
persistence_timeout 50
protocol TCP
sorry_server 192.168.200.200 1358
real_server 192.168.200.2 1358 {
weight 1
HTTP_GET {
url {
path /testurl/test.jsp
digest 640205b7b0fc66c1ea91c463fac6334d
}
url {
path /testurl2/test.jsp
digest 640205b7b0fc66c1ea91c463fac6334d
}
url {
path /testurl3/test.jsp
digest 640205b7b0fc66c1ea91c463fac6334d
}
connect_timeout 3
retry 3
delay_before_retry 3
}
}
real_server 192.168.200.3 1358 {
weight 1
HTTP_GET {
url {
path /testurl/test.jsp
digest 640205b7b0fc66c1ea91c463fac6334c
}
url {
path /testurl2/test.jsp
digest 640205b7b0fc66c1ea91c463fac6334c
}
connect_timeout 3
retry 3
delay_before_retry 3
}
}
}
virtual_server 10.10.10.3 1358 {
delay_loop 3
lb_algo rr
lb_kind NAT
persistence_timeout 50
protocol TCP
real_server 192.168.200.4 1358 {
weight 1
HTTP_GET {
url {
path /testurl/test.jsp
digest 640205b7b0fc66c1ea91c463fac6334d
}
url {
path /testurl2/test.jsp
digest 640205b7b0fc66c1ea91c463fac6334d
}
url {
path /testurl3/test.jsp
digest 640205b7b0fc66c1ea91c463fac6334d
}
connect_timeout 3
retry 3
delay_before_retry 3
}
}
real_server 192.168.200.5 1358 {
weight 1
HTTP_GET {
url {
path /testurl/test.jsp
digest 640205b7b0fc66c1ea91c463fac6334d
}
url {
path /testurl2/test.jsp
digest 640205b7b0fc66c1ea91c463fac6334d
}
url {
path /testurl3/test.jsp
digest 640205b7b0fc66c1ea91c463fac6334d
}
connect_timeout 3
retry 3
delay_before_retry 3
}
}
}
以上配置文件看上去很多,其实主要包含三个大块:
-
global_defs:全局配置,主要配置路由ID及邮件通知等信息
-
vrrp_instance:vrrp实例配置,也就是当前Keepalived的节点信息已经管理的VIP,主备及优先级等
-
virtual_server:主要管理LVS,在本教程中使用不到
通过上面对配置文件大致的说明,下面来正式配置Keepalived
主节点配置:
! Configuration File for keepalived
global_defs {
router_id lb01
vrrp_skip_check_adv_addr
vrrp_garp_interval 0
vrrp_gna_interval 0
}
vrrp_script check_nginx {
script "/usr/local/nginx/script/health_check.sh"
interval 2
weight -20
fall 3
rise 2
}
vrrp_instance VI_1 {
state BACKUP
interface eth0
virtual_router_id 51
priority 100
advert_int 3
nopreempt # 非抢占式,也就是当主宕机重启后不会抢占为主,必须将state状态改为BACKUP,所有节点的state状态都必须是BACKUP
garp_master_delay 1
garp_master_refresh 5
authentication {
auth_type PASS
auth_pass 123456
}
unicast_src_ip 192.168.123.247 # 设置本机内网IP地址
unicast_peer {
192.168.123.249 # 对端设备的 IP 地址
}
virtual_ipaddress {
192.168.123.242/28 dev eth0 label eth0:0
}
track_script {
check_nginx # 监控脚本的名称
}
}
备节点配置:
! Configuration File for keepalived
global_defs {
router_id lb02
vrrp_skip_check_adv_addr
vrrp_garp_interval 0
vrrp_gna_interval 0
}
vrrp_script check_nginx {
script "/usr/local/nginx/script/health_check.sh"
interval 2
weight -20
fall 3
rise 2
}
vrrp_instance VI_1 {
state BACKUP
interface eth0
virtual_router_id 51
priority 50
advert_int 3
nopreempt # 非抢占式,也就是当主宕机重启后不会抢占为主,必须将state状态改为BACKUP,所有节点的state状态都必须是BACKUP
garp_master_delay 1
garp_master_refresh 5
authentication {
auth_type PASS
auth_pass 123456
}
unicast_src_ip 192.168.123.249 # 设置本机内网IP地址
unicast_peer {
192.168.123.247 # 对端设备的 IP 地址
}
virtual_ipaddress {
192.168.123.242/28 dev eth0 label eth0:0
}
track_script {
check_nginx # 监控脚本的名称
}
}
配置参数解释:
-
router_id:路由ID,在整个局域网中必须唯一
-
定义一个检查nginx健康状态的脚本,并且需要为该脚本赋予可执行权限,该脚本主要的作用是,检查nginx进程是否还在运行,如果非运行状态,则将Keepalived进程关闭,出发备节点vrrp进行IP漂移
脚本内容如下:
#!/bin/bash count=$(ps -ef |grep nginx |egrep -cv "grep|$$") if [ "$count" -eq 0 ];then systemctl stop keepalived fi
-
主备节点配置为BACKUP,这里主要是实现主备节点为非抢占模式,什么是非抢占式,也就是说,当主节点宕机后备节点升级为主过后,当原来的主节点恢复,当下的主节点不会被剥夺MASTER角色,也就是VIP不会再次漂移,其主要目的是为了,尽量的避免非节点宕机导致的间歇性不可用,当然如果主备节点在预先设定的主节点性能等各方面更优,这里可以考虑设置为抢占式的,当然,非抢占式还需要搭配
nopreempt
一起使用 -
virtual_router_id:虚拟路由ID,需要主备一致
-
priority:优先级,当同时启动主备节点时,优先级更高的节点会被选主
-
advert_int:主备节点间的心跳间隔
-
authentication:主备节点的身份认证
-
unicast_src_ip:由于云服务的一些限制,默认不允许虚拟网络内的广播,所有这里采用单播的方式进行vrrp通信,这里配置的是当前节点的IP地址
-
unicaset_peer:对端IP
-
virtual_address:需要Keepalived管理的虚拟IP,可以填写多个,其实这里使用的就是ip addr add命令
-
track_script:健康检查运行的脚本
Nginx安装及配置
Nginx所需要的库预先安装
yum install -y gcc pcre-devel zlib-devel openssl openssl-devel
安装Nginx
这里使用源码编译安装,安装分为以下几步
-
解压:
tar -zxvf nginx-xxx.tar.gz
-
编译:
./configure --prefix=/usr/local/nginx --with-http_stub_status_module --with-http_ssl_module --with-file-aio --with-http_realip_module --with-stream
,这里编译选中所需要的库即可,因为这里后续还需要代理Kubernetes集群中Ingress Controller,需要使用到四层代理,所以这里--with-stream
参数不能少 -
安装:
make && make install
,如果没有出现异常就可以进行安装了
配置
配置主要有两块,首先是反向代理、负载均衡的配置,其次是Nginx服务的配置文件,开机自启以及Keepalived的自启
配置Kubernetes Api Server反向代理、负载均衡
首先在nginx.conf中引入外部配置文件
http {
# 这里需要避免后续四层代理的端口80冲突
listen 8888;
# ... 此处省略其他配置
include nginx.conf.d/http/*.conf;
}
stream {
log_format main '$remote_addr $upstream_addr - [$time_local] $status $upstream_bytes_sent';
access_log /var/log/nginx/stream-access.log main;
include nginx.conf.d/stream/*.conf;
}
Api Server的配置文件
upstream k8s-apiserver {
server 192.168.123.244:6443;
server 192.168.123.245:6443;
server 192.168.123.246:6443;
}
server {
listen 6443;
proxy_pass k8s-apiserver;
}
Ingress Controller的配置文件
upstream k8s-ingress-controller-http {
server 192.168.123.244:30744;
server 192.168.123.245:30744;
server 192.168.123.246:30744;
}
server {
listen 80;
proxy_pass k8s-ingress-controller-http;
}
upstream k8s-ingress-controller-https {
server 192.168.123.244:31574;
server 192.168.123.245:31574;
server 192.168.123.246:31574;
}
server {
listen 443;
proxy_pass k8s-ingress-controller-https;
}
因为Ingress Controller代理使用四层代理,并且端口为80/443,所以,在http段中就不能监听80/443端口,避免冲突导致服务启动失败。
配置nginx.service
要实现开机服务自启,需要将nginx配置为Unit服务
[Unit]
Description=The nginx HTTP and reverse proxy server
After=network-online.target remote-fs.target nss-lookup.target
Wants=network-online.target
[Service]
Type=forking
PIDFile=/usr/local/nginx/logs/nginx.pid
ExecStartPre=/usr/bin/rm -f /usr/local/nginx/logs/nginx.pid
ExecStartPre=/usr/local/nginx/sbin/nginx -t
ExecStart=/usr/local/nginx/sbin/nginx
ExecReload=/usr/local/nginx/sbin/nginx -s reload
KillSignal=SIGQUIT
TimeoutStopSec=5
KillMode=process
PrivateTmp=true
[Install]
WantedBy=multi-user.target
将nginx.service存放于/usr/lib/systemd/system/nginx.service
创建文件夹
mkdir -p /var/log/nginx
通过命令启动nginx即可:
systemctl daemon-reload
systemctl enable --now nginx.service
systemctl status nginx.service
配置Keepalived在Nginx后启动
修改Keepalived的Unit文件,在/usr/lib/systemd/system/keepalived.service
文件夹下,然后在After后面添加nginx.service即可,如下:
[Unit]
Description=LVS and VRRP High Availability Monitor
After=network-online.target syslog.target nginx.service
Wants=network-online.target
[Service]
Type=forking
PIDFile=/var/run/keepalived.pid
KillMode=process
EnvironmentFile=-/etc/sysconfig/keepalived
ExecStart=/usr/sbin/keepalived $KEEPALIVED_OPTIONS
ExecReload=/bin/kill -HUP $MAINPID
[Install]
WantedBy=multi-user.target
Kubernetes集群部署
集群版本及主机规划
这里采用三台服务器搭建Kubernetes集群,三个master三个node,每台服务器既担任master,也担任node,这里采用的是腾讯云的竞价服务器,不得不说,这个是真好啊,一个小时几毛钱,比起之前薅羊毛方便多了。
主机名 | 角色 | IP | 软件 |
---|---|---|---|
i1 | Master/Node | 192.168.123.244 | etcd/kubectl/kube-api-server/kube-controller-manager/kube-scheduler/kube-proxy/kubelet/containerd/runc |
i2 | Master/Node | 192.168.123.245 | etcd/kubectl/kube-api-server/kube-controller-manager/kube-scheduler/kube-proxy/kubelet/containerd/runc |
i3 | Master/Node | 192.168.123.246 | etcd/kubectl/kube-api-server/kube-controller-manager/kube-scheduler/kube-proxy/kubelet/containerd/runc |
这里需要说的是:在kubernetes中,真正实现了高可用集群的是ETCD,因为所有数据都保存到ETCD中,ETCD需要保证数据的一致性,所以会有选主的过程,而对于Api Server来说,它只是一个访问ETCD集群的客户端,严格来说,它是无状态的,没有数据也就不需要考虑一致性,所以,Api Server无论多少个都是可以同时存在的,而Master节点中其他两个组件Controller Manager和Scheduler,如果一个kubernetes集群中有多个Master节点(也就是说存在多个controller-manager和Scheduler),也只会有一个controller-manager和Scheduler工作,其他节点处于休眠状态,当工作节点的controller-manager和Scheduler出现宕机,则集群中的某一个节点的controller-manager和Scheduler被唤醒,也就相当于是主备切换从而来达到服务的高可用。
总结:ETCD严格意义上来说,至少需要3个节点来构建最小集群,api server、controller manager、Scheduler至少需要2个节点即可构建一个高可用的kubernetes,当然了,apiserver作为kubernetes的主入口,需要对多个apiserver进行负载均衡,然而负载均衡又会出现单点问题,所以,在这之前我们使用keepalived对负载均衡器做主备高可用。
软件版本
作为一个有经验的开发人员,版本不能盲目追新,但作为一个有强迫症的码农,又比较喜欢追新,所以,保守点吧,选个1.24吧。
软件 | 版本 | 下载地址 |
---|---|---|
CentOS | 8.4 | |
Kubernetes | v1.24.0 | v1.24.0 |
Etcd | v3.5.4 | v3.5.4 |
Containerd | v1.6.1 | v1.6.1 |
Runc | v1.1.0 | v1.1.0 |
网络分配
项目 | 网段 |
---|---|
节点网络 | 192.168.123.0/29 |
集群网络 | 10.96.0.0/16 |
Pod网络 | 172.18.0.0/16 |
安装前准备
关闭防火墙、必要软件安装、关闭Swap空间
这里我直接整理为一个脚本,后续只需要执行就可以了,内容如下
#! /bin/bash
# 关闭防火墙
systemctl stop firewalld
systemctl disable firewalld
# 关闭SELinux
setenforce 0
sed -ri 's/SELINUX=enforcing/SELINUX=disabled/' /etc/selinux/config
# 交换分区设置
swapoff -a
sed -ri 's/.*swap.*/#&/' /etc/fstab
echo "vm.swappiness=0" >> /etc/sysctl.conf
sysctl -p
# limit优化
ulimit -SHn 65535
cat <<EOF >> /etc/security/limits.conf
* soft nofile 655360
* hard nofile 131072
* soft nproc 655350
* hard nproc 655350
* soft memlock unlimited
* hard memlock unlimited
EOF
#ipvs管理工具安装及模块加载
yum -y install ipvsadm ipset sysstat conntrack libseccomp
modprobe -- ip_vs
modprobe -- ip_vs_rr
modprobe -- ip_vs_wrr
modprobe -- ip_vs_sh
modprobe -- nf_conntrack
cat >/etc/modules-load.d/ipvs.conf <<EOF
ip_vs
ip_vs_lc
ip_vs_wlc
ip_vs_rr
ip_vs_wrr
ip_vs_lblc
ip_vs_lblcr
ip_vs_dh
ip_vs_sh
ip_vs_fo
ip_vs_nq
ip_vs_sed
ip_vs_ftp
ip_vs_sh
nf_conntrack
ip_tables
ip_set
xt_set
ipt_set
ipt_rpfilter
ipt_REJECT
ipip
EOF
# 加载containerd相关内核模块
modprobe overlay
modprobe br_netfilter
# 永久性加载模块
cat > /etc/modules-load.d/containerd.conf << EOF
overlay
br_netfilter
EOF
# 设置为开机启动
systemctl enable --now systemd-modules-load.service
# Linux内核优化
cat <<EOF > /etc/sysctl.d/k8s.conf
net.ipv4.ip_forward = 1
net.bridge.bridge-nf-call-iptables = 1
net.bridge.bridge-nf-call-ip6tables = 1
fs.may_detach_mounts = 1
vm.overcommit_memory=1
vm.panic_on_oom=0
fs.inotify.max_user_watches=89100
fs.file-max=52706963
fs.nr_open=52706963
net.netfilter.nf_conntrack_max=2310720
net.ipv4.tcp_keepalive_time = 600
net.ipv4.tcp_keepalive_probes = 3
net.ipv4.tcp_keepalive_intvl =15
net.ipv4.tcp_max_tw_buckets = 36000
net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_max_orphans = 327680
net.ipv4.tcp_orphan_retries = 3
net.ipv4.tcp_syncookies = 1
net.ipv4.tcp_max_syn_backlog = 16384
net.ipv4.ip_conntrack_max = 131072
net.ipv4.tcp_max_syn_backlog = 16384
net.ipv4.tcp_timestamps = 0
net.core.somaxconn = 16384
EOF
sysctl --system
# 安装一些其他工具
yum install wget jq psmisc vim net-tools telnet yum-utils device-mapper-persistent-data lvm2 git lrzsz -y
# 重启服务器,保证重启后内核依旧加载
reboot -h now
主机名设置
根据上面的说明配置各个服务器的主机名
hostnamectl set-hostname i1
主机名与IP地址映射
这里之所以有其他i4 i5是为了后续添加节点方便,本例中无实际作用
cat >> /etc/hosts << EOF
192.168.123.244 i1
192.168.123.245 i2
192.168.123.246 i3
EOF
配置免密登录
由于后续所有操作大部分是在i1上操作,其他节点的文件只需要从i1上copy过去就可以了,所以这里只需要在i1上能免密登录到其他节点即可
在i1上执行如下命令:
ssh-keygen
设置完密码(本例中不设置,直接一路回车即可)后会在当前用户家目录下的.ssh文件夹下生成两个文件id_rsa
/id_rsa.pub
,将id_rsa.pub
的内容复制到其他节点的~/.ssh/authorized_keys文件中
注意:这里如果有多个客户端免密登录,则需要一行一串秘钥即可
下面测试一下是否配置成功
ssh root@i2
创建工作目录
在用户家目录创建kubernetes
目录,后续所有操作均在此目录下进行
mkdir ~/kubernetes
证书工具下载
wget https://github.com/cloudflare/cfssl/releases/download/v1.6.4/cfssl_1.6.4_linux_amd64
wget https://github.com/cloudflare/cfssl/releases/download/v1.6.4/cfssljson_1.6.4_linux_amd64
wget https://github.com/cloudflare/cfssl/releases/download/v1.6.4/cfssl-certinfo_1.6.4_linux_amd64
赋予执行权限
chmod +x cfssl*
将工具移动到/usr/local/bin
目录下
mv cfssl_1.6.4_linux_amd64 /usr/local/bin/cfssl
mv cfssljson_1.6.4_linux_amd64 /usr/local/bin/cfssljson
mv cfssl-certinfo_1.6.4_linux_amd64 /usr/local/bin/cfssl-certinfo
检查是否安装成功:cfssl version
证书前置知识
创建CA配置文件
该配置文件是通用的,用于指定某个证书有效期及验证方式
cat > ca-config.json <<"EOF"
{
"signing": {
"default": {
"expiry": "87600h"
},
"profiles": {
"peer": {
"usages": [
"signing",
"key encipherment",
"server auth",
"client auth"
],
"expiry": "87600h"
},
"server": {
"usages": [
"signing",
"key encipherment",
"server auth"
],
"expiry": "87600h"
},
"client": {
"usages": [
"signing",
"key encipherment",
"client auth"
],
"expiry": "87600h"
}
}
}
}
EOF
接下来我们就开始搭建Kubernetes集群,在搭建集群之前,这里我要说点和别的教程不一样的,一直以来我们都习惯傻瓜式的被动的教程,别人说怎么样就怎么样,但自己并不知道为什么这样,我们知道搭建Kubernetes最重要的就是证书,也不能说最重要的,起码的,你搞懂Kubernetes的证书,至少搭建就成功了百分之六十,为什么这么难懂,其实只是因为在Kubernetes中证书太多了,各种各样的证书,搞得眼花缭乱,很多作者把ETCD Kubernetes的证书全部由一个CA颁发,我并不是说这么做不可以,这么做没有问题,并且生产环境中大多都这么使用的,但是,为了让我们更加清楚证书在Kubernetes中的作用,某个请求需要哪些证书,这里我尽量的为每一个服务器客户端颁发不同的证书,并且使用不同的CA。
Kubernetes证书梳理
本教程旨在疑问搞明白Kubernetes安装流程及思路,所有里面牵扯到其他知识可能会比较啰嗦,如果对某些地方熟悉的可跳过。
密码学PKI(可跳过)
先来了解一下概念
-
散列函数(hash函数):MD5/SHA-1/SHA-256等,散列函数所计算的值是单向定长且不可逆的。
-
对称加密:根据相同的密钥相同的算法对数据进行加密,也可以使用相同的密钥及相同的算法解密数据,所以,密钥就显得特别重要。
-
非对称加密:公钥加密,私钥解密;私钥签名,公钥验签;加密和签名其本质上原理是一样的,只是签名相对于加密多了一个步骤,就是将数据先进性散列得到一个hash值,我们称之为摘要/指纹,然后对摘要进行加密,而加密是直接操作数据。反之解密和验签是一样的解析流程。
我们可能会好奇为什么签名需要有摘要,原因是,签名具有数据完整性/不可否认性,摘要保证了数据不被篡改,而私钥是严格保密的,只有所有者有私钥,所以私钥签名的数据所有者是不可否认的。
-
证书:证书的作用就一个,就是安全的公钥交换,这也是数据安全传输的前提,如果没有了这个前提,就没有安全一说,举个例子:
A需要给B发送了一个秘密文件,首先A/B各自有自己的一对公司钥,然后双方需要公钥交换,这个时候C从中截取了A给B的公钥,然后替换成了C自己的公钥,这个时候B得到的就是C的公钥,反之A得到的也是C的公钥,而C有A和B的公钥,在A发送秘密文件时(先用B的公钥对数据进行加密,然后用A自己的私钥签名,而这里所持有的B的公钥其实是C的公钥),数据同样的被C窃取,C首先用A的公钥验证签名,然后用自己的私钥对数据进行解密,这样就得到了A发送给B的秘密文件,然后做一些不可描述的事情,然后C用B的公钥对篡改过的数据进行加密,然后用自己的私钥进行签名,发送给B,因为B持有C的公钥,所以B可以对C传过来的数据进行验证签名及解密,这就出现了不安全的数据传输问题。
以上案例有两个问题,1.公钥交换不安全,2.A/B双方虽然有公钥,但并不知道公钥属于谁,所以,就出现了证书。
证书最重要的信息有四个部分,所有者信息(名称/域名/组织等),所有者公钥,过期时间,CA机构用私钥对以上数据的签名。在我们的操作系统中都会存在CA权威机构的根证书,也就是操作系统中内置了CA的公钥,这里拿https举个例子:客户端在访问一个https网站时,服务器会向客户端发送证书,浏览器收到服务器的证书后,对证书进行验证,使用CA对根证书(CA公钥)对服务器端的证书数据验签,确认是CA颁发的证书后验证通过,说明该证书确实是当前网站的公钥(这里还有域名校验,暂不展开),然后客户端会生成一个对称密钥,使用服务器证书中的公钥加密发送给服务器端,服务器收到对称密钥后,后面的数据使用对称加密进行保证数据安全的传输。
-
单向认证:通常情况下https是单向验证的,也就是说,只需要客户端验证服务器的身份,服务器信任所有客户端。
-
双向认证:双向认证标识客户端需要验证服务器身份,服务器也需要验证客户端身份,这时,客户端也需要有自己的证书。
通过对上面概念的了解,我们还需要了解一下证书格式:
-
Pfx:该证书包含公钥及私钥,一般情况下,在对接第三方API时,比如银联支付接口会使用该中证书作为商户的证书,因为包含了私钥,所以在提取私钥时需要提供密码。
-
Cer:该正式只包含公钥,一般作为API提供方证书,因为只有公钥,可以进行验证签名和数据加密的操作。
kubernetes证书梳理
证书只用于身份认证(使用证书对应的私钥对证书进行签名,发送给客户端或者服务端,对方收到后,首先验证证书是否可信,这里需要使用CA进行验证,证书受信任后,再将证书中的公钥拿出来对整个数据进行验签,确保数据从服务器或者客户端发送过来没有被篡改,然后读取证书中的身份信息)
kubernetes所需要的证书及CA
这里采用一个CA只签发一套证书的方式来搭建k8s集群,便于更好的理解双向认证以及哪些证书私钥几CA根证书是成套的。首先拟清楚k8s中哪些请求需要证书
-
ETCD集群各个节点之间通信所需要的peer证书
需要的证书及CA
-
用于签发ETCD peer证书的CA及私钥(etcd-peer-ca.pem)
-
使用etcd-peer-ca.pem CA签发的peer证书(etcd-peer.pem)
-
etcd-peer.pem对应的私钥文件(etcd-peer-key.pem)
-
-
ETCD对外提供服务所使用的服务端证书
需要的证书及CA
-
用于签发ETCD server证书的CA及私钥(etcd-server-ca.pem)
-
使用etcd-server-ca.pem CA签发的server证书(etcd-server.pem)
-
etcd-server.pem对应的私钥文件(etcd-server-key.pem)
-
-
etcdctl访问ETCD集群的客户端证书(如果需要)
需要的证书及CA
-
用于签发ETCD client证书的CA及私钥(etcd-client-ca.pem)
-
使用etcd-client-ca.pem CA签发的server证书(etcd-client-user.pem)
-
etcd-client-user.pem对应的私钥文件(etcd-client-user-key.pem)
-
-
kube-api-server访问ETCD所需要的客户端证书
需要的证书及CA
-
用于签发ETCD client证书的CA及私钥(etcd-client-ca.pem)
-
使用etcd-client-ca.pem CA签发的client证书(etcd-client-apiserver.pem)
-
etcd-client-apiserver.pem对应的私钥文件(etcd-client-apiserver-key.pem)
-
-
kube-api-server对外提供服务的服务端证书
需要的证书及CA
-
用于签发apiserver server证书的CA及私钥(apiserver-server-ca.pem)
-
使用apiserver-server-ca.pem CA签发的server证书(apiserver-server.pem)
-
apiserver-server.pem对应的私钥文件(apiserver-server-key.pem)
-
-
kube-controller-manager对外提供服务的服务端证书
需要的证书及CA
-
用于签发controller-manager server证书的CA及私钥(controller-manager-server-ca.pem)
-
使用controller-manager-server-ca.pem CA签发的server证书(controller-manager-server.pem)
-
controller-manager-server.pem对应的私钥文件(controller-manager-server-key.pem)
-
-
kube-scheduler访问apiserver所需要的客户端证书
需要的证书及CA
-
用于签发apiserver client证书的CA及私钥(apiserver-client-ca.pem)
-
使用apiserver-client-ca.pem CA签发的client证书(apiserver-client-scheduler.pem)
-
apiserver-client-scheduler.pem对应的私钥文件(apiserver-client-scheduler-key.pem)
-
-
kube-controller-manager访问apiserver所需要的客户端证书
需要的证书及CA
-
使用apiserver-client-ca.pem CA签发的client证书(apiserver-client-controller-manager.pem)
-
apiserver-client-controller-manager.pem对应的私钥文件(apiserver-client-controller-manager-key.pem)
-
-
kube-proxy访问apiserver所需要的客户端证书
需要的证书及CA
-
使用apiserver-client-ca.pem CA签发的client证书(apiserver-client-proxy.pem)
-
apiserver-client-proxy.pem对应的私钥文件(apiserver-client-proxy-key.pem)
-
-
kubelet访问apiserver所需要的客户端证书?
这里比较特殊,Kubernetes团队考虑到Node节点的不可观测性,为kubelet指定了TLS Bootstrapping机制来为kubelet自动颁发服务端及客户端相关的证书,自动签发的CA均来自kube-controller-manager配置文件中指定的
--cluster-signing-cert-file
参数需要的证书及CA
-
创建一个用于集群中证书签署的公用CA(cluster-ca.pem)
-
使用cluster-ca.pem CA签发的client证书(kubelet-client.pem),该证书由controller-manager自动签发
-
-
kubectl管理员访问apiserver所需要的客户端证书
需要的证书及CA
-
使用apiserver-client-ca.pem CA签发的client证书(apiserver-client-admin.pem)
-
apiserver-client-admin.pem对应的私钥文件(apiserver-client-admin-key.pem)
-
-
kubelet对外提供服务的服务端证书?
需要的证书及CA
- 使用cluster-ca.pem CA签发的server证书(kubelet-server.pem),该证书由controller-manager自动签发
-
kube-api-server访问kubelet所需要的客户端证书
需要的证书及CA
-
用于签发kubelet client证书的CA(kubelet-client-ca.pem)
-
使用kubelet-client-ca.pem CA签发的client证书(kubelet-client-apiserver.pem)
-
kubelet-client-apiserver.pem对应的私钥文件(kubelet-client-apiserver-key.pem)
-
-
ApiServer访问API聚合所需要的客户端证书(如果需要)
需要的证书及CA
- 用于签发apiserver client证书的CA(extra-apiserver-client-ca.pem)
- 使用extra-apiserver-client-ca.pem签发的client证书(extra-proxy-client.pem)
- extra-proxy-client.pem对应的私钥(extra-proxy-client-key.pem)
通过以上分析大概需要14套证书以及好几套CA,虽然这么多,但是每一套证书都是有迹可循的,把他们分开来看,就会搞清楚Kubernetes的认证流程已经哪些组件需要进行安全的通信
注意:上面的证书配置及生成中可能会遇到一下几个问题,并且这里非常关键,我逐一说明:
-
通过上面的步骤生成的证书可以跑起来一个Kubernetes集群,完全没有问题,但是当你打开ETCD集群日志时,你会发现如下WARNING
2021-06-09 11:10:13.022735 I | embed: rejected connection from "127.0.0.1:50898" (error "tls: failed to verify client's certificate: x509: certificate specifies an incompatible key usage", ServerName "") WARNING: 2021/06/09 11:10:13 grpc: addrConn.createTransport failed to connect to {127.0.0.1:12379 0 }. Err :connection error: desc = "transport: authentication handshake failed: remote error: tls: bad certificate". Reconnecting...
虽然是警告,但是作为强迫症程序员,这不能忍,我通过翻找ETCD的ISSUES,ETCDv3使用gRPC来提供服务,但为了能够支持REST API,ETCD使用gRPC Gateway来转发REST请求到gRPC Server,但是,当我们启动客户端身份认证时,gRPC Server也会对gRPC Gateway进行身份认证(这里直接使用了etcd的服务端证书进行发送),并且验证使用的CA就是我们配置的
--trusted-ca-file
参数,所以,这里会产生两个问题,第一、etcd的服务端证书需要同时支持Server以及Client身份认证;第二、由于ETCD验证客户端的CA证书参数和gRPC Server验证gRPC Gateway证书的参数是同一个参数指定的,所以,这里必须使用同一个CA。也就是说,ETCD集群最多只能有两个CA(ETCD集群节点间通信双向认证的CA以及服务端客户端公用一个CA),虽然参数上面没有明确的限制,但是从逻辑上来讲,最多只能使用两个CA,当然了,一个CA当然是可以的。
-
我们说kubelet的证书是由controller-manager颁发的,默认情况下,controller-manager默认只为kubelet颁发用于访问apiserver的客户端证书,但是我们可以通过配置让controller-manager为kubelet颁发对外提供服务的服务端证书(为什么需要?在后面Metrics Server那一节说),好,那么现在controller-manager为kubelet颁发服务端证书以及客户端证书,但是现在的问题是,controller-manager为kubelet颁发证书的CA使用的是同一个,也就是参数
--cluster-signing-cert-file
指定。同一个CA有什么问题?
加入一个Kubernetes集群中所有操作使用同一个CA,一点毛病没有,但是这里为了搞清楚Kubernetes证书的双向认证流程,我们尽量的使用不同的CA以及不同的证书来演示,所以,这里说的目的是,因为controller-manger为kubelet颁发了客户端证书,该证书需要用于访问apiserver,所以kube-apiserver的客户端CA(通过
--client-ca-file
参数制定)就必须和controller-manger的集群CA(通过--cluster-signing-cert-file
参数制定)相同。然后由于controller-manager也为kubelet颁发了服务端证书,当apiserver需要访问kubelet时,apiserver需要验证kubelet的身份(当然了,Kubernetes中apiserver默认不对kubelet进行身份认证,只有在设置了--kubelet-certificate-authority
参数时才会验证),所以kubelet服务器证书的CA需要指定为controller-manager中--cluster-signing-cert-file
参数一致。当这三个CA合并为一个,其他之前分析的由apiserver-client-ca颁发的客户端证书需要由集群CA颁发。也就是说,整个Kubernetes所需要的CA有用于签发Apiserver服务端证书的CA,用于签发controller-manager服务端证书的CA以及集群CA(颁发kubelet服务端/客户端证书),以及API聚合CA,还有一个Kubelet用于验证其客户端的CA
ETCD集群搭建
创建ETCD PEER CA
创建ETCD PEER CA证书请求文件
cat > etcd-peer-ca-csr.json <<"EOF"
{
"CN": "etcd-peer-ca",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "GuangDong",
"L": "ShenZhen",
"O": "ETCD",
"OU": "System"
}
],
"ca": {
"expiry": "87600h"
}
}
EOF
生成ETCD PEER CA的证书及私钥
cfssl gencert -initca etcd-peer-ca-csr.json | cfssljson -bare etcd-peer-ca
生成ETCD PEER证书
创建ETCD PEER证书请求文件
cat > etcd-peer-csr.json <<"EOF"
{
"CN": "etcd-peer",
"hosts": [
"127.0.0.1",
"192.168.123.244",
"192.168.123.245",
"192.168.123.246"
],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [{
"C": "CN",
"ST": "GuangDong",
"L": "ShenZhen",
"O": "ETCD",
"OU": "System"
}]
}
EOF
这里需要注意的是,hosts 表示要签名的域名或IP,必须包含运行节点的IP,当hosts域不为空时,表示后续使用该证书只能在指定的IP及域名上使用
生成ETCD PEER证书
cfssl gencert -ca=etcd-peer-ca.pem -ca-key=etcd-peer-ca-key.pem -config=ca-config.json -profile=peer etcd-peer-csr.json | cfssljson -bare etcd-peer
生成ETCD CA
创建ETCD CA证书请求文件
cat > etcd-ca-csr.json <<"EOF"
{
"CN": "etcd-ca",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "GuangDong",
"L": "ShenZhen",
"O": "ETCD",
"OU": "System"
}
],
"ca": {
"expiry": "87600h"
}
}
EOF
生成ETCD CA证书及私钥
cfssl gencert -initca etcd-ca-csr.json | cfssljson -bare etcd-ca
生成ETCD Server证书
创建ETCD Server证书请求文件
cat > etcd-server-csr.json <<"EOF"
{
"CN": "etcd-server",
"hosts": [
"127.0.0.1",
"192.168.123.244",
"192.168.123.245",
"192.168.123.246"
],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [{
"C": "CN",
"ST": "GuangDong",
"L": "ShenZhen",
"O": "ETCD",
"OU": "System"
}]
}
EOF
生成证书及私钥(这里需要特别注意的是,profile需要指定为peer,因为它需要作为服务器证书也需要作为客户端证书)
cfssl gencert -ca=etcd-ca.pem -ca-key=etcd-ca-key.pem -config=ca-config.json -profile=peer etcd-server-csr.json | cfssljson -bare etcd-server
生成ETCD Client User证书
这里说明一下,该证书用于命令行工具etcdctl对ETCD集群的访问,如果没有该证书,etcdctl只能通过非安全端口对当前节点进行访问
创建ETCD Client User证书请求文件
cat > etcd-client-user-csr.json <<"EOF"
{
"CN": "etcd-client-user",
"hosts": [],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [{
"C": "CN",
"ST": "GuangDong",
"L": "ShenZhen",
"O": "ETCD",
"OU": "System"
}]
}
EOF
这里的hosts未指定任何IP地址及域名,表明任何节点都能访问etcd
生成客户端(终端)证书
cfssl gencert -ca=etcd-ca.pem -ca-key=etcd-ca-key.pem -config=ca-config.json -profile=client etcd-client-user-csr.json | cfssljson -bare etcd-client-user
创建目录
mkdir -p /etc/etcd/ssl
mkdir -p /var/lib/etcd/default.etcd
创建ETCD配置文件
cat > /etc/etcd/etcd.conf <<"EOF"
#[Member]
ETCD_NAME="etcd1"
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.123.244:2380"
ETCD_LISTEN_CLIENT_URLS="https://192.168.123.244:2379,http://127.0.0.1:2379"
#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.123.244:2380"
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.123.244:2379"
ETCD_INITIAL_CLUSTER="etcd1=https://192.168.123.244:2380,etcd2=https://192.168.123.245:2380,etcd3=https://192.168.123.246:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"
EOF
参数解释:
-
ETCD_DATA_DIR:ETCD数据持久化目录
-
ETCD_LISTEN_PEER_URLS:ETCD集群节点之间通信的IP及端口,IP用于绑定到固定网卡
-
ETCD_LISTEN_CLIENT_URLS:ETCD集群当前节点对外提供服务绑定的网卡及端口
创建ETCD服务配置文件
cat > /etc/systemd/system/etcd.service <<"EOF"
[Unit]
Description=Etcd Server
After=network.target
After=network-online.target
Wants=network-online.target
[Service]
Type=notify
EnvironmentFile=-/etc/etcd/etcd.conf
WorkingDirectory=/var/lib/etcd/
ExecStart=/usr/local/bin/etcd \
--cert-file=/etc/etcd/ssl/etcd-server.pem \
--key-file=/etc/etcd/ssl/etcd-server-key.pem \
--trusted-ca-file=/etc/etcd/ssl/etcd-ca.pem \
--peer-cert-file=/etc/etcd/ssl/etcd-peer.pem \
--peer-key-file=/etc/etcd/ssl/etcd-peer-key.pem \
--peer-trusted-ca-file=/etc/etcd/ssl/etcd-peer-ca.pem \
--peer-client-cert-auth \
--client-cert-auth
Restart=on-failure
RestartSec=5
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
EOF
参数解释:
-
--cert-file:ETCD对外提供服务的服务器证书文件
-
--key-file:--cert-file参数对应的私钥
-
--trusted-ca-file:受信任的客户端证书CA根证书,用于验证客户端证书有效性
-
--peer-cert-file:集群节点间证书
-
--peer-key-file:--peer-cert-file参数对应的私钥
-
--peer-trusted-ca-file:集群节点间证书的CA
分发文件到其他节点
将集群节点中需要用到的软件二进制文件、配置文件、证书等copy到其他节点
-
将etcd/etcdctl/etcdutl复制到三个节点中的
/usr/local/bin
目录下cp etcd* /usr/local/bin/ scp etcd* i2:/usr/local/bin/ scp etcd* i3:/usr/local/bin/
-
将etcd相关的证书复制到三个节点中的
/etc/etcd/ssl
目录下cp etcd-ca-key.pem etcd-ca.pem etcd-client-user-key.pem etcd-client-user.pem etcd-peer-ca-key.pem etcd-peer-ca.pem etcd-peer-key.pem etcd-peer.pem etcd-server-key.pem etcd-server.pem /etc/etcd/ssl/ scp etcd-ca-key.pem etcd-ca.pem etcd-client-user-key.pem etcd-client-user.pem etcd-peer-ca-key.pem etcd-peer-ca.pem etcd-peer-key.pem etcd-peer.pem etcd-server-key.pem etcd-server.pem i2:/etc/etcd/ssl/ scp etcd-ca-key.pem etcd-ca.pem etcd-client-user-key.pem etcd-client-user.pem etcd-peer-ca-key.pem etcd-peer-ca.pem etcd-peer-key.pem etcd-peer.pem etcd-server-key.pem etcd-server.pem i3:/etc/etcd/ssl/
-
将配置文件复制到三个节点中的
/etc/etcd
目录下,并分别更改配置,这里需要改的参数有ETCD_NAME、ETCD_LISTEN_PEER_URLS、ETCD_INITIAL_ADVERTISE_PEER_URLS、ETCD_ADVERTISE_CLIENT_URLS,需要更改以上四个参数中的节点名称以及IP地址为当前节点的IPscp /etc/etcd/etcd.conf i2:/etc/etcd/ scp /etc/etcd/etcd.conf i3:/etc/etcd/ scp /etc/systemd/system/etcd.service i2:/etc/systemd/system/ scp /etc/systemd/system/etcd.service i3:/etc/systemd/system/
启动ETCD
systemctl daemon-reload
systemctl enable --now etcd.service
systemctl status etcd
测试集群(健康检查)
使用ETCD客户端CA颁发的用户证书进行访问
ETCDCTL_API=3 etcdctl --write-out=table --cacert=/etc/etcd/ssl/etcd-ca.pem --cert=/etc/etcd/ssl/etcd-client-user.pem --key=/etc/etcd/ssl/etcd-client-user-key.pem --endpoints=https://192.168.123.244:2379,https://192.168.123.245:2379,https://192.168.123.246:2379 endpoint health
kube-apiserver安装
生成ETCD Client Api Server证书
生成用于访问ETCD集群的apiserver客户端证书
创建etcd client apiserver证书请求文件
cat > etcd-client-apiserver-csr.json <<"EOF"
{
"CN": "etcd-client-apiserver",
"hosts": [],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [{
"C": "CN",
"ST": "GuangDong",
"L": "ShenZhen",
"O": "Kubernetes",
"OU": "System"
}]
}
EOF
使用etcd client ca颁发证书
cfssl gencert -ca=etcd-ca.pem -ca-key=etcd-ca-key.pem -config=ca-config.json -profile=client etcd-client-apiserver-csr.json | cfssljson -bare etcd-client-apiserver
生成Api Server CA
创建Api Server Server CA证书请求文件
cat > apiserver-server-ca-csr.json <<"EOF"
{
"CN": "apiserver-server-ca",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "GuangDong",
"L": "ShenZhen",
"O": "Kubernetes",
"OU": "System"
}
],
"ca": {
"expiry": "87600h"
}
}
EOF
生成CA证书及秘钥
cfssl gencert -initca apiserver-server-ca-csr.json | cfssljson -bare apiserver-server-ca
生成Api Server Server证书
创建Api Server Server证书请求文件
cat > apiserver-server-csr.json << "EOF"
{
"CN": "kubernetes",
"hosts": [
"127.0.0.1",
"192.168.123.244",
"192.168.123.245",
"192.168.123.246",
"192.168.123.242",
"10.96.0.1",
"kubernetes",
"kubernetes.default",
"kubernetes.default.svc",
"kubernetes.default.svc.cluster",
"kubernetes.default.svc.cluster.local",
"*.k8s.dev-james.xyz"
],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "GuangDong",
"L": "ShenZhen",
"O": "Kubernetes",
"OU": "System"
}
]
}
EOF
注意:如果apiserver做了高可用,VIP也需要填写到hosts域中,否则会出现如下错误:
Unable to connect to the server: x509: certificate is valid for 127.0.0.1, 192.168.123.244, 192.168.123.245, 192.168.123.246, 10.96.0.1, not 192.168.123.242
使用Api Server CA颁发证书
cfssl gencert -ca=apiserver-server-ca.pem -ca-key=apiserver-server-ca-key.pem -config=ca-config.json -profile=server apiserver-server-csr.json | cfssljson -bare apiserver-server
生成集群CA(Api Client CA)
创建Cluster CA证书请求文件
cat > cluster-ca-csr.json <<"EOF"
{
"CN": "cluster-ca",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "GuangDong",
"L": "ShenZhen",
"O": "Kubernetes",
"OU": "System"
}
],
"ca": {
"expiry": "87600h"
}
}
EOF
生成CA证书及秘钥
cfssl gencert -initca cluster-ca-csr.json | cfssljson -bare cluster-ca
创建Service Account需要使用的密钥对
openssl genrsa -out sa.key 2048
openssl rsa -in sa.key -pubout -out sa.pub
生成Kubelet Client CA
由于apiserver会作为客户端访问kubelet,所以需要创建Kubelet Client Api Server证书,而生成该证书又需要一个Kubelet Client CA,所以
创建kubelet客户端CA证书请求文件
cat > kubelet-client-ca-csr.json <<"EOF"
{
"CN": "kubelet-client-ca",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "GuangDong",
"L": "ShenZhen",
"O": "Kubernetes",
"OU": "System"
}
],
"ca": {
"expiry": "87600h"
}
}
EOF
生成CA证书及私钥
cfssl gencert -initca kubelet-client-ca-csr.json | cfssljson -bare kubelet-client-ca
生成Kubelet Client Api Server证书
创建证书请求文件
cat > kubelet-client-apiserver-csr.json <<"EOF"
{
"CN": "kubelet-client-apiserver",
"hosts": [],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [{
"C": "CN",
"ST": "GuangDong",
"L": "ShenZhen",
"O": "ETCD",
"OU": "System"
}]
}
EOF
生成证书及私钥
cfssl gencert -ca=kubelet-client-ca.pem -ca-key=kubelet-client-ca-key.pem -config=ca-config.json -profile=client kubelet-client-apiserver-csr.json | cfssljson -bare kubelet-client-apiserver
生成ExtraApiserver Client CA证书
创建证书请求文件
cat > extra-apiserver-client-ca-csr.json <<"EOF"
{
"CN": "extra-apiserver-client-ca",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "GuangDong",
"L": "ShenZhen",
"O": "Kubernetes",
"OU": "System"
}
],
"ca": {
"expiry": "87600h"
}
}
EOF
生成证书及秘钥
cfssl gencert -initca extra-apiserver-client-ca-csr.json | cfssljson -bare extra-apiserver-client-ca
生成ExtraApiserver Client ApiServer证书
该证书用于ApiServer访问ExtraApiServer
创建证书请求文件
cat > extra-proxy-client-csr.json <<"EOF"
{
"CN": "aggregator",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [{
"C": "CN",
"ST": "GuangDong",
"L": "ShenZhen",
"O": "system:masters",
"OU": "System"
}]
}
EOF
生成证书及私钥
cfssl gencert -ca=extra-apiserver-client-ca.pem -ca-key=extra-apiserver-client-ca-key.pem -config=ca-config.json -profile=client extra-proxy-client-csr.json | cfssljson -bare extra-proxy-client
创建目录
mkdir -p /etc/kubernetes/ssl
mkdir -p /var/log/kubernetes
创建Api Server配置文件
cat > /etc/kubernetes/kube-apiserver.conf <<"EOF"
KUBE_APISERVER_OPTS="--enable-admission-plugins=NamespaceLifecycle,NodeRestriction,LimitRanger,ServiceAccount,DefaultStorageClass,ResourceQuota \
--anonymous-auth=false \
--bind-address=192.168.123.244 \
--secure-port=6443 \
--advertise-address=192.168.123.244 \
--authorization-mode=Node,RBAC \
--runtime-config=api/all=true \
--enable-bootstrap-token-auth=true \
--service-cluster-ip-range=10.96.0.0/16 \
--service-node-port-range=30000-32767 \
--tls-cert-file=/etc/kubernetes/ssl/apiserver-server.pem \
--tls-private-key-file=/etc/kubernetes/ssl/apiserver-server-key.pem \
--client-ca-file=/etc/kubernetes/ssl/cluster-ca.pem \
--kubelet-certificate-authority=/etc/kubernetes/ssl/cluster-ca.pem \
--kubelet-client-certificate=/etc/kubernetes/ssl/kubelet-client-apiserver.pem \
--kubelet-client-key=/etc/kubernetes/ssl/kubelet-client-apiserver-key.pem \
--service-account-key-file=/etc/kubernetes/ssl/sa.pub \
--service-account-signing-key-file=/etc/kubernetes/ssl/sa.key \
--service-account-issuer=api \
--etcd-cafile=/etc/etcd/ssl/etcd-ca.pem \
--etcd-certfile=/etc/kubernetes/ssl/etcd-client-apiserver.pem \
--etcd-keyfile=/etc/kubernetes/ssl/etcd-client-apiserver-key.pem \
--etcd-servers=https://192.168.123.244:2379,https://192.168.123.245:2379,https://192.168.123.246:2379 \
--requestheader-client-ca-file=/etc/kubernetes/ssl/extra-apiserver-client-ca.pem \
--requestheader-allowed-names=aggregator \
--requestheader-extra-headers-prefix=X-Remote-Extra- \
--requestheader-group-headers=X-Remote-Group \
--requestheader-username-headers=X-Remote-User \
--proxy-client-cert-file=/etc/kubernetes/ssl/extra-proxy-client.pem \
--proxy-client-key-file=/etc/kubernetes/ssl/extra-proxy-client-key.pem \
--allow-privileged=true \
--apiserver-count=3 \
--audit-log-maxage=30 \
--audit-log-maxbackup=3 \
--audit-log-maxsize=100 \
--audit-log-path=/var/log/kubernetes/kube-apiserver-audit.log \
--event-ttl=1h \
--alsologtostderr=true \
--logtostderr=false \
--log-dir=/var/log/kubernetes \
--v=4"
EOF
参数解释
-
--authorization-mode:支持的鉴权方式
-
--enable-bootstrap-token-auth:开启TLS Bootstrapping认证
-
--service-cluster-ip-range:ServiceIP网段
-
--service-node-port-range:Service端口范围
-
--tls-cert-file:Api Server服务端证书
-
--tls-private-key-file:服务端证书秘钥
-
--client-ca-file:客户端CA根证书,用于验证客户端身份
-
--kubelet-certificate-authority:这里实际上是指定的签发kubelet-server证书的CA根证书文件路径
注意:默认情况下,API Server不检查 kubelet 的服务证书,为了对这个连接进行认证,使用--kubelet-certificate-authority
标志给 API 服务器提供一个根证书,用于验证 kubelet 的服务证书。 -
--kubelet-client-certificate:kubelet客户端证书,用于API Server作为客户端访问kubelet时表明身份的证书,通常见于执行kubectl exec pod或者kubectl logs等命令
-
--kubelet-client-key:kubelet客户端证书秘钥
-
--service-account-key-file:Service Account验签公钥,对Service Account的Token进行验签
-
--service-account-signing-key-file:Service Account私钥,对Service Account的Token进行签名
-
--etcd-cafile:ETCD服务端CA根证书,用于验证ETCD服务端身份
-
--etcd-certfile:API Server访问ETCD集群所需要的客户端证书,该证书必须由etcd-client-ca颁发
-
--etcd-keyfile:ETCD客户端证书对应的私钥
创建Api Server服务配置文件
cat > /etc/systemd/system/kube-apiserver.service << "EOF"
[Unit]
Description=Kubernetes API Server
Documentation=https://github.com/kubernetes/kubernetes
After=etcd.service
Wants=etcd.service
[Service]
EnvironmentFile=-/etc/kubernetes/kube-apiserver.conf
ExecStart=/usr/local/bin/kube-apiserver $KUBE_APISERVER_OPTS
Restart=on-failure
RestartSec=5
Type=notify
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
EOF
分发文件到其他节点
将启动API Server所需要的二进制文件,配置文件,证书文件分发到集群Master节点
-
将kube-apiserver复制到各个节点的
/usr/local/bin/
目录下cp kube-apiserver kube-controller-manager kube-scheduler kubelet kube-proxy kubectl /usr/local/bin/ scp kube-apiserver kube-controller-manager kube-scheduler kubelet kube-proxy kubectl i2:/usr/local/bin/ scp kube-apiserver kube-controller-manager kube-scheduler kubelet kube-proxy kubectl i3:/usr/local/bin/
-
将kube-apiserver.conf复制到各个节点的
/etc/kubernetes/
目录下,并相应的修改参数--bind-address
和--advertise-address
为节点IP地址scp /etc/kubernetes/kube-apiserver.conf i2:/etc/kubernetes/ scp /etc/kubernetes/kube-apiserver.conf i3:/etc/kubernetes/
-
将kube-apiserver.service复制到各个节点的
/etc/systemd/system/
目录下scp /etc/systemd/system/kube-apiserver.service i2:/etc/systemd/system/ scp /etc/systemd/system/kube-apiserver.service i3:/etc/systemd/system/
-
将证书文件复制到各个节点的·
/etc/kubernetes/ssl/
目录下cp apiserver-server-ca-key.pem apiserver-server-ca.pem apiserver-server-key.pem apiserver-server.pem cluster-ca-key.pem cluster-ca.pem etcd-client-apiserver-key.pem etcd-client-apiserver.pem extra-apiserver-client-ca-key.pem extra-apiserver-client-ca.pem extra-proxy-client-key.pem extra-proxy-client.pem kubelet-client-apiserver-key.pem kubelet-client-apiserver.pem kubelet-client-ca-key.pem kubelet-client-ca.pem /etc/kubernetes/ssl/ scp apiserver-server-ca-key.pem apiserver-server-ca.pem apiserver-server-key.pem apiserver-server.pem cluster-ca-key.pem cluster-ca.pem etcd-client-apiserver-key.pem etcd-client-apiserver.pem extra-apiserver-client-ca-key.pem extra-apiserver-client-ca.pem extra-proxy-client-key.pem extra-proxy-client.pem kubelet-client-apiserver-key.pem kubelet-client-apiserver.pem kubelet-client-ca-key.pem kubelet-client-ca.pem i2:/etc/kubernetes/ssl/ scp apiserver-server-ca-key.pem apiserver-server-ca.pem apiserver-server-key.pem apiserver-server.pem cluster-ca-key.pem cluster-ca.pem etcd-client-apiserver-key.pem etcd-client-apiserver.pem extra-apiserver-client-ca-key.pem extra-apiserver-client-ca.pem extra-proxy-client-key.pem extra-proxy-client.pem kubelet-client-apiserver-key.pem kubelet-client-apiserver.pem kubelet-client-ca-key.pem kubelet-client-ca.pem i3:/etc/kubernetes/ssl/ # 将操作Service Account的公钥及私钥复制到ssl文件夹下 cp sa.key sa.pub /etc/kubernetes/ssl/ scp sa.key sa.pub i2:/etc/kubernetes/ssl/ scp sa.key sa.pub i3:/etc/kubernetes/ssl/
启动Api Server
systemctl daemon-reload
systemctl enable --now kube-apiserver.service
systemctl status kube-apiserver
配置kubectl
生成ApiServer Client证书admin
创建admin用户证书请求文件
cat > apiserver-client-admin-csr.json << "EOF"
{
"CN": "admin",
"hosts": [],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "GuangDong",
"L": "ShenZhen",
"O": "system:masters",
"OU": "System"
}
]
}
EOF
这里需要注意的是,CN一定要是admin,O一定要是system:masters
,在Kubernetes集群中,预定义了一些用户组,其中system:masters
组具有集群管理员的最高权限。
生成证书及私钥,该证书需要使用cluster-ca.pem进行颁发
cfssl gencert -ca=cluster-ca.pem -ca-key=cluster-ca-key.pem -config=ca-config.json -profile=client apiserver-client-admin-csr.json | cfssljson -bare apiserver-client-admin
配置kube.config
使用kubectl工具创建kube.config文件
kubectl config set-cluster kubernetes --certificate-authority=apiserver-server-ca.pem --embed-certs=true --server=https://192.168.123.242:6443 --kubeconfig=kube.config
kubectl config set-credentials admin --client-certificate=apiserver-client-admin.pem --client-key=apiserver-client-admin-key.pem --embed-certs=true --kubeconfig=kube.config
kubectl config set-context admin@kubernetes --cluster=kubernetes --user=admin --kubeconfig=kube.config
kubectl config use-context admin@kubernetes --kubeconfig=kube.config
简单说一下以上命令的含义
-
第一行指定了集群的URL地址以及服务器证书的CA,相当于创建了一个集群访问入口
-
第二行设置了一个用户,名称为admin,并指定了客户端证书
-
第三行将用户和集群关联,表示为一个上下文,这里其实还可以指定namespace,表示默认使用的是哪个命名空间
-
第四行设置默认使用哪个上下文
来看一下kube.config文件的内容
apiVersion: v1
clusters:
- cluster:
certificate-authority-data: LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUQ1RENDQXN5Z0F3SUJBZ0lVSEVkLzM1QS9qMWx2MlNCZDZ6VlJvNkFIMWZrd0RRWUpLb1pJaHZjTkFRRUwKQlFBd2VERUxNQWtHQTFVRUJoTUNRMDR4RWpBUUJnTlZCQWdUQ1VkMVlXNW5SRzl1WnpFUk1BOEdBMVVFQnhNSQpVMmhsYmxwb1pXNHhFekFSQmdOVkJBb1RDa3QxWW1WeWJtVjBaWE14RHpBTkJnTlZCQXNUQmxONWMzUmxiVEVjCk1Cb0dBMVVFQXhNVFlYQnBjMlZ5ZG1WeUxYTmxjblpsY2kxallUQWVGdzB5TXpBMk1Ea3dPRFF3TURCYUZ3MHoKTXpBMk1EWXdPRFF3TURCYU1IZ3hDekFKQmdOVkJBWVRBa05PTVJJd0VBWURWUVFJRXdsSGRXRnVaMFJ2Ym1jeApFVEFQQmdOVkJBY1RDRk5vWlc1YWFHVnVNUk13RVFZRFZRUUtFd3BMZFdKbGNtNWxkR1Z6TVE4d0RRWURWUVFMCkV3WlRlWE4wWlcweEhEQWFCZ05WQkFNVEUyRndhWE5sY25abGNpMXpaWEoyWlhJdFkyRXdnZ0VpTUEwR0NTcUcKU0liM0RRRUJBUVVBQTRJQkR3QXdnZ0VLQW9JQkFRQ3g5bGNkOGIxcHFsZTJqcERNS1VTL044WUY1QnJVU0wyNgpndUh6eWdVRlV1ZW9PbkwyTHljWmZ4bG1uUmxrMVAydnQxRm9oOWgrK1ZpVzNoSEZYNEFhdFdGS1ZZTFJNMHBBCmlwZEZlMlR3ZDJDTnJSSVROME1HVjI3d2JHYnVBNjFxYXV5OWtIUnBWZW1LcXBuMS84U2U2ZTk5cFkvd3NtZHgKaGVlcGpjOGF2YkR0clZBQzc0SmMwZ3hoeTEzT0lZSk9GZWNobmkxcWphM1YvQkMrbGEwVHh3NnNSVGpDMHA5OAp0YURNSEFLQ3hGUFh2aUhWa1VrQVF5YW1RSXRDSkdyeFhlamN1dlpUS3R4NlZ5cWRVUlljRyszYWtlN2tRdVNYCnpsSkdwNGNVNC9MMThmckw1VmJVVVBpWFNDZEdLUStrbDdmTWFSZ1ZOb2UyUDdLSjNKZjNBZ01CQUFHalpqQmsKTUE0R0ExVWREd0VCL3dRRUF3SUJCakFTQmdOVkhSTUJBZjhFQ0RBR0FRSC9BZ0VDTUIwR0ExVWREZ1FXQkJRRwpLeHJ3bDdVK20xMHkxNXpQUDc0bTBDOTcvREFmQmdOVkhTTUVHREFXZ0JRR0t4cndsN1UrbTEweTE1elBQNzRtCjBDOTcvREFOQmdrcWhraUc5dzBCQVFzRkFBT0NBUUVBcGpjdWFSUmt6UVVkNEZtOG9XM292dm9qWTRQdVN3a1kKNGdxY1ZKaXZIQzA0eGVkWktxUjB4VU5URFpKU3J4UVJFS1cyQlZ6aFlsUlRyZWRuSXpGMzZvSk9vZXJqWDAvQQowL1FkR2NpWWJUVnlYNy9yTWJQS25nRlRIMkJFZm9COXQ1eUxvWlFLYjAxTk9OTVhraE9oRjF0UzlweFBCRERuCjhtMnRBNVZ5UGViemQ3T1Y0aTl6M24wS0ZYTTJCSFVDc3g4c1kvMG5ESldzQ3hWTWJ3UGJCY21SZ0tRWU11MkMKZHhPVVZVSmwxR3B6dmpaV29mY1dNbDJqWm1KclFEbS9WclUzczdveTREREY5UWVJNHhOUEdaYkhZSjJNa0F2UwpTNlBjVFB1YmxjYTlFdnFrc1J1cmhSVERCWWVoNXRHVUFFZ3BlbTBoTkh5OGs0YUFrVFU4bkE9PQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
server: https://192.168.123.242:6443
name: kubernetes
contexts:
- context:
cluster: kubernetes
user: admin
name: admin@kubernetes
current-context: admin@kubernetes
kind: Config
preferences: {}
users:
- name: admin
user:
client-certificate-data: LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUQ2VENDQXRHZ0F3SUJBZ0lVRVEvUCtjNkRRdXMxQ3FZNTVKT0dFd1YxRWNjd0RRWUpLb1pJaHZjTkFRRUwKQlFBd2VERUxNQWtHQTFVRUJoTUNRMDR4RWpBUUJnTlZCQWdUQ1VkMVlXNW5SRzl1WnpFUk1BOEdBMVVFQnhNSQpVMmhsYmxwb1pXNHhFekFSQmdOVkJBb1RDa3QxWW1WeWJtVjBaWE14RHpBTkJnTlZCQXNUQmxONWMzUmxiVEVjCk1Cb0dBMVVFQXhNVFlYQnBjMlZ5ZG1WeUxXTnNhV1Z1ZEMxallUQWVGdzB5TXpBMk1Ea3hNREV5TURCYUZ3MHoKTXpBMk1EWXhNREV5TURCYU1HNHhDekFKQmdOVkJBWVRBa05PTVJJd0VBWURWUVFJRXdsSGRXRnVaMFJ2Ym1jeApFVEFQQmdOVkJBY1RDRk5vWlc1YWFHVnVNUmN3RlFZRFZRUUtFdzV6ZVhOMFpXMDZiV0Z6ZEdWeWN6RVBNQTBHCkExVUVDeE1HVTNsemRHVnRNUTR3REFZRFZRUURFd1ZoWkcxcGJqQ0NBU0l3RFFZSktvWklodmNOQVFFQkJRQUQKZ2dFUEFEQ0NBUW9DZ2dFQkFMYkk0MksvTkJEakVHR0lYek82aW1QUk1wZlpyTHJnTko4V0FiVE1SbkFJZVBZRgpVZWVoeDltNjJtM2RlUHcyeTVHV2FDcjY4Wm8yMC9VdWJJb21ZYXdjOElTQlZiMStEQW1CZjVzTjI4ZnZyMW9DCis2ZmhmMzIyQTJpcGFJZ0pQcXAwbGRCUlI0cHZsTjJwWEF4Umo0Y1djTWp0N0tlREhRKzBweFJRb2U4alJQa0IKL1J1b1BMaW9Vc1dycXN2N3kzUzdtK0xwVnFaT3hlVGNTZHNYRVZqRDNmNHVQdXN4YzN1MUVNS2huVFFBWjh6WApoNFZydG8wV2IzUHk2WWhHN2lrcWhaMWM3TW9QOEZjNFNYUlM5WTJCTzhiYWVIelhPWjcvTXBpU0Y3MDdDalBrCmNMVSszYTlIRkppTDZGV2s2di9IRGpERmdRbVNCQUZ4OHFuVkhhTUNBd0VBQWFOMU1ITXdEZ1lEVlIwUEFRSC8KQkFRREFnV2dNQk1HQTFVZEpRUU1NQW9HQ0NzR0FRVUZCd01DTUF3R0ExVWRFd0VCL3dRQ01BQXdIUVlEVlIwTwpCQllFRkJhVEVVTmRId1p5dGd3MzEyWElwK09xVGJVa01COEdBMVVkSXdRWU1CYUFGRjI2ZVFQbTZWcU10V1pBClFtR3ptSzE2bEd5WE1BMEdDU3FHU0liM0RRRUJDd1VBQTRJQkFRQThFVnh2cXRYMitwZ3RheFhRdXUzd1MvRHIKY1pJaWh3TVJJTEVoWktlZS94WU8wd3hPY2dhb0xaWHlLUmRJZzJvS0RVVXpHRUhmUTZ6K1k1alV2U1ZZeUxFZQpsN0NCQnIvbjBCVlB2ajdPL1lVMUVEZzlrOUZzYUZLVE5iQmN3U3h4ZnppbUcrS3VQL0JrNS9GN3liOEJReExxCkdHejBjQ3JicmFwb29RYmZSYm5RTmZkYVJyWWpibVNRVkJ0STNSQzl2RXBmcUZCS1JhRlFnclpaNm9VcG8yVCsKTHlJVG9PQmJOeXpXSjRiUk9uamZ3QVI4RG1PbUc5STNDWENXU3ZpdzNjWXVMOG4vUDZQbkJJbjFFK2pQcHBOVwp6OTc1TENOUzVEUk1FeXpKTDFaRVRENi9zZ2kya3E4MEp0SUFwRXluWFZYVDhiVHRvVEtEN2xmYkMvL3gKLS0tLS1FTkQgQ0VSVElGSUNBVEUtLS0tLQo=
client-key-data: LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLRVktLS0tLQpNSUlFb2dJQkFBS0NBUUVBdHNqallyODBFT01RWVloZk03cUtZOUV5bDltc3V1QTBueFlCdE14R2NBaDQ5Z1ZSCjU2SEgyYnJhYmQxNC9EYkxrWlpvS3ZyeG1qYlQ5UzVzaWlaaHJCendoSUZWdlg0TUNZRi9tdzNieCsrdldnTDcKcCtGL2ZiWURhS2xvaUFrK3FuU1YwRkZIaW0rVTNhbGNERkdQaHhad3lPM3NwNE1kRDdTbkZGQ2g3eU5FK1FIOQpHNmc4dUtoU3hhdXF5L3ZMZEx1YjR1bFdwazdGNU54SjJ4Y1JXTVBkL2k0KzZ6RnplN1VRd3FHZE5BQm56TmVICmhXdTJqUlp2Yy9McGlFYnVLU3FGblZ6c3lnL3dWemhKZEZMMWpZRTd4dHA0Zk5jNW52OHltSklYdlRzS00rUncKdFQ3ZHIwY1VtSXZvVmFUcS84Y09NTVdCQ1pJRUFYSHlxZFVkb3dJREFRQUJBb0lCQUI5UFJmUHlRSjdyNWpCdQp4YS84c2h2ckI3bVBKZEZVK202TnZIa1Z6TE1BSUlnejNSWEtWb3RyUUdNMVhyWUZSTldKYUFxRXRjSHV4bHZuCk9keG9PcTdhdmpCVVh6VjRVK09FOVREQUxQZVFqUDdrSit0WDZ4akRoczMweHQwV2lFOTJiUHNrRVJjYmllcDIKU2pncCtHWHhhQnhpOVBpMHN0T3Y1RGJNb1JCdk5kK3JRaU5CaU5YOUZuY0dvN0RWS1FrelVjcy9uT0FvbG0vUgo5MXVNY3BCeGNmVzRjUGhLS3FSQ1JvN2NOM294ZUNJc3g2bE5xT0JJOHdaU3hFL2diWEtGMlBhN3h1K21VbGdnCldYV3JkRUo3Y2g5Si83MHI4UmQ5Tzg0TWxheW5HOEdrVFNJbUppYm5kSlJMemlnRzNLNEVhanZHNkp4QUZTQTQKVjJOSlpRRUNnWUVBeU9Da21MYWVjR1UxZjF5UC92WCtMRGJKblZseWd0cE9aRjh6c1FRVkNnT3MrencrVlREbgo2NHBNNlo3d2phWFR6YXJDVVhtZ0FHWThtSUVtV1d5dkd2V1JyQ2JzL0hkQWVOcTFNbS8wUFJ4K2V6eHBWR01NCklqalJDb0xoQ0VlanZrTkxLemZpWWZ0QXBZUmM3S0FLdUx4SXVoNW05QW9pSFJkWFU2Snhta0VDZ1lFQTZQRkEKcWN5SC9wanBjV1ZBZGZ3Q08wS1cySlBzQ2NIQWVGRW5jK2g2K3NVT3pjdjJQS0NKeGFRM2JLcVZhaFFtYi8vRAp0bTZOcmhTUTRjWXk1TW0xaUJBVmpmZXNzbHJQRG5DaldERG9tS2RoOS92ZUI4ditId2RhWGdLZVVsYXlQZXZEClRnSVpITnY4cjN2TURGdzdjNW0yeVRDVTZEdmFPcnhlODVobjF1TUNnWUJwZTMwekxBSTY1d3FXbkphSXZjZ0EKazZ4L1VlOE53M0VTeCtNdSt3UEpSSERiWktFZXZ4V3AyKy9UWmNEUHdOcGR6Mk5Hd1dWQmtHNFZid3dpUFM0ZQpMQUdZc3NBVE90UENJcWF2bTVaWFdOVWFCWGtSOVFqMEYzMjkxVWd4dnR5L0Zqc3NzS1hSNmN2aW5vVGxSSTBjCndOSTMyYXNhVHcvbTB0RHFmQXpIZ1FLQmdDWDhTVjRuRXpvcU4wOGRnc0I2b3VhRStsSkE5T20yWmF0NUdHVG4KVVQ2WmFjdVhhZ1VDN05TRTdlRFRoRi95L3oyZVNJejBSRGhSOURwTTlybW1SdXIwTEgrbEZzMVN6NWI4T1RiRgphdmlSdXdFVVdtV05GMWg1KzN0L0U5QTdnUDlsOWNnL3dWYWFiUDgwd2RaMko5KzIvajZhcEgybVhQVGRDT0xTClJJU2ZBb0dBVFdzTHB4Y2Iyd3hIdlI5aDNHWDg0V205SmFKV1RFQmZVejZUSk9FSUdMU21uSnBZWVdFaTVJV3kKMnZDN2RQdVF3MUlxM3ZGTVU1V0RFclF5QmFPMm44QjRWYjVVMjJMY3c5OWJTRHNUSFFyc0pJbGJ5MmlTMzBlaApnL3VDaUNQRlcyUVIvMmRxbFp0RHpQVko3dUZtY3hHTDFtZzZFMjgvK3pkbjNSK29MdFU9Ci0tLS0tRU5EIFJTQSBQUklWQVRFIEtFWS0tLS0tCg==
大致内容就分为三块,集群、用户身份以及用户身份所对应的集群(上下文)
将kube.config复制到相应位置
mkdir ~/.kube
cp kube.config ~/.kube/config
测试集群连通性及集群状态
kubectl get cs
部署kube-controller-manager
生成kuber-controller-manager Server CA
创建controller manger Server CA证书请求文件
cat > controller-manager-server-ca-csr.json <<"EOF"
{
"CN": "controller-manager-server-ca",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "GuangDong",
"L": "ShenZhen",
"O": "Kubernetes",
"OU": "System"
}
],
"ca": {
"expiry": "87600h"
}
}
EOF
生成根证书及私钥
cfssl gencert -initca controller-manager-server-ca-csr.json | cfssljson -bare controller-manager-server-ca
生成Controller Manger服务器证书
创建证书请求文件
cat > controller-manager-server-csr.json << "EOF"
{
"CN": "kubernetes",
"hosts": [
"127.0.0.1",
"192.168.123.244",
"192.168.123.245",
"192.168.123.246"
],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "GuangDong",
"L": "ShenZhen",
"O": "Kubernetes",
"OU": "System"
}
]
}
EOF
生成证书及私钥
cfssl gencert -ca=controller-manager-server-ca.pem -ca-key=controller-manager-server-ca-key.pem -config=ca-config.json -profile=server controller-manager-server-csr.json | cfssljson -bare controller-manager-server
生成用于访问apiserver的客户端证书
创建证书请求文件
cat > apiserver-client-controller-manager-csr.json << "EOF"
{
"CN": "system:kube-controller-manager",
"hosts": [],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "GuangDong",
"L": "ShenZhen",
"O": "system:kube-controller-manager",
"OU": "System"
}
]
}
EOF
生成证书及私钥
cfssl gencert -ca=cluster-ca.pem -ca-key=cluster-ca-key.pem -config=ca-config.json -profile=client apiserver-client-controller-manager-csr.json | cfssljson -bare apiserver-client-controller-manager
创建kubeconfig文件
kubectl config set-cluster kubernetes --certificate-authority=apiserver-server-ca.pem --embed-certs=true --server=https://192.168.123.242:6443 --kubeconfig=kube-controller-manager.kubeconfig
kubectl config set-credentials system:kube-controller-manager --client-certificate=apiserver-client-controller-manager.pem --client-key=apiserver-client-controller-manager-key.pem --embed-certs=true --kubeconfig=kube-controller-manager.kubeconfig
kubectl config set-context system:kube-controller-manager --cluster=kubernetes --user=system:kube-controller-manager --kubeconfig=kube-controller-manager.kubeconfig
kubectl config use-context system:kube-controller-manager --kubeconfig=kube-controller-manager.kubeconfig
指定集群APIServer地址及服务端CA证书、客户端证书及上下文
创建配置文件
cat > /etc/kubernetes/kube-controller-manager.conf << "EOF"
KUBE_CONTROLLER_MANAGER_OPTS="--secure-port=10257 \
--bind-address=127.0.0.1 \
--kubeconfig=/etc/kubernetes/kube-controller-manager.kubeconfig \
--service-cluster-ip-range=10.96.0.0/16 \
--cluster-name=kubernetes \
--cluster-signing-cert-file=/etc/kubernetes/ssl/cluster-ca.pem \
--cluster-signing-key-file=/etc/kubernetes/ssl/cluster-ca-key.pem \
--allocate-node-cidrs=true \
--cluster-cidr=172.18.0.0/16 \
--cluster-signing-duration=87600h \
--root-ca-file=/etc/kubernetes/ssl/apiserver-server-ca.pem \
--service-account-private-key-file=/etc/kubernetes/ssl/sa.key \
--leader-elect=true \
--feature-gates=RotateKubeletServerCertificate=true \
--controllers=*,bootstrapsigner,tokencleaner \
--horizontal-pod-autoscaler-sync-period=10s \
--tls-cert-file=/etc/kubernetes/ssl/controller-manager-server.pem \
--tls-private-key-file=/etc/kubernetes/ssl/controller-manager-server-key.pem \
--use-service-account-credentials=true \
--alsologtostderr=true \
--logtostderr=false \
--log-dir=/var/log/kubernetes \
--v=2"
EOF
参数解释:
-
--kubeconfig:访问apiserver的配置文件,上面讲了,里面包含三个重要的信息,分别是集群、用户、上下文
-
--service-cluster-ip-range:集群中service的网段
-
--cluster-signing-cert-file:用于给集群中其他组件颁发用于访问apiserver证书的CA根证书,因为是给其他组件颁发证书,所以需要使用apiserver的客户端CA证书进行颁发,这里必须要和apiserver中--client-ca-file参数一致
-
--cluster-cidr:集群中POD的网段
-
--controllers:要启用的控制器列表
-
--cluster-signing-duration:所签发的证书有效期
-
--service-account-private-key-file:对Service Account Token进行签名,后续Service Account访问Api Server是,Api Server会对Service Account Token签名进行验证
-
--root-ca-file:如果此标志非空,则在服务账号的令牌 Secret 中会包含此根证书机构。该CA将包含在Service Account的Secret中,用于验证Api Server的服务端证书,所以这里一定是签发Api Server证书的CA根证书
-
--horizontal-pod-autoscaler-sync-period:HPA同步周期,默认15s
-
--tls-cert-file:对外提供服务的证书
创建controller manager服务配置文件
cat > /etc/systemd/system/kube-controller-manager.service << "EOF"
[Unit]
Description=Kubernetes Controller Manager
Documentation=https://github.com/kubernetes/kubernetes
[Service]
EnvironmentFile=-/etc/kubernetes/kube-controller-manager.conf
ExecStart=/usr/local/bin/kube-controller-manager $KUBE_CONTROLLER_MANAGER_OPTS
Restart=on-failure
RestartSec=5
[Install]
WantedBy=multi-user.target
EOF
同步安装其他Master节点
所有Master节点均需要安装kube-controller-manager,配置雷同
-
复制证书等相关文件
cp apiserver-client-controller-manager-key.pem controller-manager-server-ca-key.pem controller-manager-server-key.pem apiserver-client-controller-manager.pem controller-manager-server-ca.pem controller-manager-server.pem /etc/kubernetes/ssl/ scp apiserver-client-controller-manager-key.pem controller-manager-server-ca-key.pem controller-manager-server-key.pem apiserver-client-controller-manager.pem controller-manager-server-ca.pem controller-manager-server.pem i2:/etc/kubernetes/ssl/ scp apiserver-client-controller-manager-key.pem controller-manager-server-ca-key.pem controller-manager-server-key.pem apiserver-client-controller-manager.pem controller-manager-server-ca.pem controller-manager-server.pem i3:/etc/kubernetes/ssl/
-
复制配置文件
scp /etc/kubernetes/kube-controller-manager.conf i2:/etc/kubernetes/ scp /etc/kubernetes/kube-controller-manager.conf i3:/etc/kubernetes/ cp kube-controller-manager.kubeconfig /etc/kubernetes/ scp kube-controller-manager.kubeconfig i2:/etc/kubernetes/ scp kube-controller-manager.kubeconfig i3:/etc/kubernetes/
-
复制Unit服务配置文件
scp /etc/systemd/system/kube-controller-manager.service i2:/etc/systemd/system/ scp /etc/systemd/system/kube-controller-manager.service i3:/etc/systemd/system/
启动kube-controller-manager
systemctl daemon-reload
systemctl enable --now kube-controller-manager.service
systemctl status kube-controller-manager
部署kube-scheduler
生成scheduler客户端证书
创建用于访问apiserver的scheduler客户端证书请求文件
cat > apiserver-client-scheduler-csr.json << "EOF"
{
"CN": "system:kube-scheduler",
"hosts": [],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "GuangDong",
"L": "ShenZhen",
"O": "system:kube-scheduler",
"OU": "System"
}
]
}
EOF
这里尤其需要注意CN及O参数的值,一定要是system:kube-scheduler
生成证书及私钥
cfssl gencert -ca=cluster-ca.pem -ca-key=cluster-ca-key.pem -config=ca-config.json -profile=client apiserver-client-scheduler-csr.json | cfssljson -bare apiserver-client-scheduler
创建kubeconfig文件
kubectl config set-cluster kubernetes --certificate-authority=apiserver-server-ca.pem --embed-certs=true --server=https://192.168.123.242:6443 --kubeconfig=kube-scheduler.kubeconfig
kubectl config set-credentials system:kube-scheduler --client-certificate=apiserver-client-scheduler.pem --client-key=apiserver-client-scheduler-key.pem --embed-certs=true --kubeconfig=kube-scheduler.kubeconfig
kubectl config set-context system:kube-scheduler --cluster=kubernetes --user=system:kube-scheduler --kubeconfig=kube-scheduler.kubeconfig
kubectl config use-context system:kube-scheduler --kubeconfig=kube-scheduler.kubeconfig
创建配置文件
cat > /etc/kubernetes/kube-scheduler.conf << "EOF"
KUBE_SCHEDULER_OPTS="--bind-address=127.0.0.1 \
--kubeconfig=/etc/kubernetes/kube-scheduler.kubeconfig \
--leader-elect=true \
--alsologtostderr=true \
--logtostderr=false \
--log-dir=/var/log/kubernetes \
--v=2"
EOF
以上参数比较简单没什么好解释的
创建服务配置文件
cat > /etc/systemd/system/kube-scheduler.service << "EOF"
[Unit]
Description=Kubernetes Scheduler
Documentation=https://github.com/kubernetes/kubernetes
[Service]
EnvironmentFile=-/etc/kubernetes/kube-scheduler.conf
ExecStart=/usr/local/bin/kube-scheduler $KUBE_SCHEDULER_OPTS
Restart=on-failure
RestartSec=5
[Install]
WantedBy=multi-user.target
EOF
同步安装其他Master节点
所有的Master节点都需要安装kube-scheduler,相关配置和上面一样,无需任何更改
-
复制证书
cp apiserver-client-scheduler.pem apiserver-client-scheduler-key.pem /etc/kubernetes/ssl/ scp apiserver-client-scheduler.pem apiserver-client-scheduler-key.pem i2:/etc/kubernetes/ssl/ scp apiserver-client-scheduler.pem apiserver-client-scheduler-key.pem i3:/etc/kubernetes/ssl/
-
复制配置文件
scp /etc/kubernetes/kube-scheduler.conf i2:/etc/kubernetes/ scp /etc/kubernetes/kube-scheduler.conf i3:/etc/kubernetes/ cp kube-scheduler.kubeconfig /etc/kubernetes/ scp kube-scheduler.kubeconfig i2:/etc/kubernetes/ scp kube-scheduler.kubeconfig i3:/etc/kubernetes/
-
复制Unit服务文件
scp /etc/systemd/system/kube-scheduler.service i2:/etc/systemd/system/ scp /etc/systemd/system/kube-scheduler.service i3:/etc/systemd/system/
启动kube-scheduler
systemctl daemon-reload
systemctl enable --now kube-scheduler.service
systemctl status kube-scheduler
部署Containerd
将安装包分发到所有节点
scp cri-containerd-cni-1.6.1-linux-amd64.tar.gz i2:~/
scp cri-containerd-cni-1.6.1-linux-amd64.tar.gz i3:~/
解压
将下载好的cri-containerd-cni-xxx.tar.gz直接解压到根目录,因为containerd的目录都是预定好的,直接解压到根目录二进制文件会自动保存到相应的目录
tar -zxvf cri-containerd-cni-1.6.1-linux-amd64.tar.gz -C /
创建containerd的配置文件
这里可以创建默认的配置文件,简易实用下面的配置文件,因为默认的config.toml没有开启cri插件
# 手动创建默认的配置文件目录
mkdir /etc/containerd/
# 将containerd的一些默认配置输出到config.toml文件
containerd config default > /etc/containerd/config.toml
# 配置cri配置文件,参考https://kubernetes.io/zh-cn/docs/setup/production-environment/container-runtimes/
cat >/etc/containerd/config.toml<<EOF
root = "/var/lib/containerd"
state = "/run/containerd"
oom_score = -999
[grpc]
address = "/run/containerd/containerd.sock"
uid = 0
gid = 0
max_recv_message_size = 16777216
max_send_message_size = 16777216
[debug]
address = ""
uid = 0
gid = 0
level = ""
[metrics]
address = ""
grpc_histogram = false
[cgroup]
path = ""
[plugins]
[plugins.cgroups]
no_prometheus = false
[plugins.cri]
stream_server_address = "127.0.0.1"
stream_server_port = "0"
enable_selinux = false
sandbox_image = "registry.aliyuncs.com/google_containers/pause:3.6"
stats_collect_period = 10
systemd_cgroup = true
enable_tls_streaming = false
max_container_log_line_size = 16384
[plugins.cri.containerd]
snapshotter = "overlayfs"
no_pivot = false
[plugins.cri.containerd.default_runtime]
runtime_type = "io.containerd.runtime.v1.linux"
runtime_engine = ""
runtime_root = ""
[plugins.cri.containerd.untrusted_workload_runtime]
runtime_type = ""
runtime_engine = ""
runtime_root = ""
[plugins.cri.cni]
bin_dir = "/opt/cni/bin"
conf_dir = "/etc/cni/net.d"
conf_template = "/etc/cni/net.d/10-default.conf"
[plugins.cri.registry]
[plugins.cri.registry.mirrors]
# 这里由于我使用的海外服务器,所以暂不配置
[plugins.cri.x509_key_pair_streaming]
tls_cert_file = ""
tls_key_file = ""
[plugins.diff-service]
default = ["walking"]
[plugins.linux]
shim = "containerd-shim"
runtime = "runc"
runtime_root = ""
no_shim = false
shim_debug = false
[plugins.opt]
path = "/opt/containerd"
[plugins.restart]
interval = "10s"
[plugins.scheduler]
pause_threshold = 0.02
deletion_threshold = 0
mutation_threshold = 100
schedule_delay = "0s"
startup_delay = "100ms"
EOF
这里根据需求配置registry
[plugins.cri.registry.mirrors."docker.io"]
endpoint = [
"https://docker.mirrors.ustc.edu.cn",
"http://hub-mirror.c.163.com"
]
[plugins.cri.registry.mirrors."gcr.io"]
endpoint = [
"https://gcr.mirrors.ustc.edu.cn"
]
[plugins.cri.registry.mirrors."k8s.gcr.io"]
endpoint = [
"https://gcr.mirrors.ustc.edu.cn/google-containers/"
]
[plugins.cri.registry.mirrors."quay.io"]
endpoint = [
"https://quay.mirrors.ustc.edu.cn"
]
[plugins.cri.registry.mirrors."harbor.dev-james.xyz"]
endpoint = [
"http://harbor.dev-james.xyz"
]
安装runc
将下载的runc-amd64赋予执行的权限,然后将其copy到/usr/local/sbin/runc
chmod +x runc.amd64
mv runc.amd64 runc
cp runc /usr/local/sbin/
scp runc i2:/usr/local/sbin/
scp runc i3:/usr/local/sbin/
启动Containerd
systemctl daemon-reload
systemctl enable --now containerd.service
同步安装其他Node节点
所有的Node节点都需要安装Containerd,配置参考以上即可
创建TLS Bootstrapping需要的资源
在使用动态Token进行认证时需要创建Secret和ClusterRoleBinding
创建Secret
cat > bootstrap-token-secret.yaml << EOF
apiVersion: v1
kind: Secret
metadata:
# name 必须是 "bootstrap-token-<token id>" 格式的
name: bootstrap-token-d34ace
namespace: kube-system
# type 必须是 'bootstrap.kubernetes.io/token'
type: bootstrap.kubernetes.io/token
stringData:
# 供人阅读的描述,可选。
description: "The default bootstrap token generated by 'kubeadm init'."
# 令牌 ID 和秘密信息,必需。
token-id: d34ace
token-secret: d1ba5634578fb1cc
# 允许的用法
usage-bootstrap-authentication: "true"
usage-bootstrap-signing: "true"
# 令牌要认证为的额外组,必须以 "system:bootstrappers:" 开头
auth-extra-groups: system:bootstrappers:default-node-token,system:bootstrappers:worker,system:bootstrappers:ingress
EOF
使用kubectl进行创建Secret
kubectl apply -f bootstrap-token-secret.yaml
创建ClusterRoleBinding
cat > bootstrap-token-rbac.yaml << EOF
# enable bootstrapping nodes to create CSR
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: create-csrs-for-bootstrapping
subjects:
- kind: Group
name: system:bootstrappers
apiGroup: rbac.authorization.k8s.io
roleRef:
kind: ClusterRole
name: system:node-bootstrapper
apiGroup: rbac.authorization.k8s.io
EOF
创建资源
kubectl apply -f bootstrap-token-rbac.yaml
自动批复
允许 kubelet 请求并接收新的证书
cat > approve-new.yaml << EOF
# 批复 "system:bootstrappers" 组的所有 CSR
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: auto-approve-csrs-for-group
subjects:
- kind: Group
name: system:bootstrappers
apiGroup: rbac.authorization.k8s.io
roleRef:
kind: ClusterRole
name: system:certificates.k8s.io:certificatesigningrequests:nodeclient
apiGroup: rbac.authorization.k8s.io
EOF
创建资源
kubectl apply -f approve-new.yaml
允许 kubelet 对其客户端证书执行续期操作
cat > approve-rotate.yaml << EOF
# 批复 "system:nodes" 组的 CSR 续约请求
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: auto-approve-renewals-for-nodes
subjects:
- kind: Group
name: system:nodes
apiGroup: rbac.authorization.k8s.io
roleRef:
kind: ClusterRole
name: system:certificates.k8s.io:certificatesigningrequests:selfnodeclient
apiGroup: rbac.authorization.k8s.io
EOF
创建资源
kubectl apply -f approve-rotate.yaml
部署kubelet
创建kubeletConfiguration
该文件可以是yaml格式,也可以是json格式,这里采用json格式
cat >/etc/kubernetes/kubelet.json<<EOF
{
"kind": "KubeletConfiguration",
"apiVersion": "kubelet.config.k8s.io/v1beta1",
"authentication": {
"x509": {
"clientCAFile": "/etc/kubernetes/ssl/kubelet-client-ca.pem"
},
"webhook": {
"enabled": true,
"cacheTTL": "2m0s"
},
"anonymous": {
"enabled": false
}
},
"authorization": {
"mode": "Webhook",
"webhook": {
"cacheAuthorizedTTL": "5m0s",
"cacheUnauthorizedTTL": "30s"
}
},
"serverTLSBootstrap": true,
"address": "192.168.123.246",
"port": 10250,
"readOnlyPort": 10255,
"cgroupDriver": "systemd",
"hairpinMode": "promiscuous-bridge",
"serializeImagePulls": false,
"clusterDomain": "cluster.local.",
"clusterDNS": ["10.96.0.2"]
}
EOF
参数解释
-
clientCAFile:当kubelet作为服务器时,apiserver作为客户端访问携带证书,该参数用于指定验证客户端证书的CA根证书。
-
clusterDNS:集群DNS服务器IP地址,通常情况下是Service网段的第二个IP地址,第一个IP地址被分配给apiserver
-
address:当前节点IP地址
生成bootstrap kubeconfig文件
生成kubelet-bootstrap.kubeconfig文件
kubectl config set-cluster kubernetes --certificate-authority=apiserver-server-ca.pem --embed-certs=true --server=https://192.168.123.242:6443 --kubeconfig=kubelet-bootstrap.kubeconfig
kubectl config set-credentials kubelet-bootstrap --token=d34ace.d1ba5634578fb1cc --kubeconfig=kubelet-bootstrap.kubeconfig
kubectl config set-context default --cluster=kubernetes --user=kubelet-bootstrap --kubeconfig=kubelet-bootstrap.kubeconfig
kubectl config use-context default --kubeconfig=kubelet-bootstrap.kubeconfig
这里和之前最大的不同在于第二行,设置客户端认证的时候,之前设置的是客户端证书,而这里设置的是token,由于kubelet不需要手动颁发证书,所以该token用于访问apiserver进行证书颁发,等颁发证书后才进行客户端证书进行认证。
创建配置文件
cat > /etc/kubernetes/kubelet.conf << "EOF"
KUBELET_OPTS="--bootstrap-kubeconfig=/etc/kubernetes/kubelet-bootstrap.kubeconfig \
--cert-dir=/etc/kubernetes/ssl \
--kubeconfig=/etc/kubernetes/kubelet.kubeconfig \
--config=/etc/kubernetes/kubelet.json \
--container-runtime=remote \
--container-runtime-endpoint=unix:///run/containerd/containerd.sock \
--rotate-certificates \
--rotate-server-certificates \
--pod-infra-container-image=registry.aliyuncs.com/google_containers/pause:3.6 \
--root-dir=/etc/cni/net.d \
--alsologtostderr=true \
--logtostderr=false \
--log-dir=/var/log/kubernetes \
--v=2"
EOF
这里需要注意的是,和其他组件不同,由于kubelet属于node节点上的组件,而Node节点具有可伸缩以及不确定的特性,如果使用传统的方式进行颁发证书,当有新的节点加入并且很多节点的时候,这个时候颁发证书将是一件很繁琐的事情,鉴于此,kubernetes对此做了优化,也就是在kubelet启动时,先使用token访问apiserver,这个token会关联到一个特定的用户和组,该组有且只有颁发证书的权限,为每一个新加入的kubelet颁发证书,
- kubelet 为自己创建一个 CSR,并将其 signerName 设置为
kubernetes.io/kube-apiserver-client-kubelet
- API 服务器从 kubelet 收到证书请求并对这些请求执行身份认证, 但真正负责发放签名证书的是控制器管理器(controller-manager)。
kubelet取回证书后保存到kubelet所在节点的指定目录,并生成一个kubelet.kubeconfig文件保存到--kubeconfig
指定的目录,而当下一次kubelet宕机等重启的情况,kubelet首先会找kubeconfig参数所指定的kubeconfig文件进行认证,如果存在,则认证,不存在,则走上面的流程。
参考:https://v1-24.docs.kubernetes.io/zh-cn/docs/reference/access-authn-authz/kubelet-tls-bootstrapping/
注意:TLS 启动引导所提供的客户端证书默认被签名为仅用于 client auth
(客户端认证), 因此不能作为提供服务的证书,或者 server auth
。但是我们可以启用服务端证书,通过kubelet.json文件中指定配置serverTLSBootstrap: true
即可启用,出于安全原因,Kubernetes 核心中所实现的 CSR 批复控制器并不会自动批复节点的服务证书。*
参数解释:
-
--bootstrap-kubeconfig:用于首次启动kubelet时--kubeconfig参数所指定的kubeconfig文件不存在时用于申请证书访问apiserver所用到的token认证配置文件。
-
--container-runtime-endpoint:指定运行的容器地址,本地直接使用sock文件进行连接
-
--pod-infra-container-image:所指定的镜像不会被镜像垃圾收集器删除
创建服务配置文件
cat > /etc/systemd/system/kubelet.service << "EOF"
[Unit]
Description=Kubernetes Kubelet
Documentation=https://github.com/kubernetes/kubernetes
After=containerd.service
Requires=containerd.service
[Service]
EnvironmentFile=-/etc/kubernetes/kubelet.conf
WorkingDirectory=/var/lib/kubelet
ExecStart=/usr/local/bin/kubelet $KUBELET_OPTS
Restart=on-failure
RestartSec=5
[Install]
WantedBy=multi-user.target
EOF
创建目录
mkdir -p /var/lib/kubelet
同步安装其他Node节点
将所需要的配置文件及证书等复制到相应的node节点,需要修改kubelet.json文件中的address为当前节点IP
-
复制配置文件
scp /etc/kubernetes/kubelet.json i2:/etc/kubernetes/ scp /etc/kubernetes/kubelet.json i3:/etc/kubernetes/ scp /etc/kubernetes/kubelet.conf i2:/etc/kubernetes/ scp /etc/kubernetes/kubelet.conf i3:/etc/kubernetes/ cp kubelet-bootstrap.kubeconfig /etc/kubernetes/ scp kubelet-bootstrap.kubeconfig i2:/etc/kubernetes/ scp kubelet-bootstrap.kubeconfig i3:/etc/kubernetes/
-
复制Unit服务文件
scp /etc/systemd/system/kubelet.service i2:/etc/systemd/system/ scp /etc/systemd/system/kubelet.service i3:/etc/systemd/system/
启动kubelet
systemctl daemon-reload
systemctl enable --now kubelet
systemctl status kubelet
通过查看日志journalctl -xeu kubelet
可能会出现一下问题:
-
Failed to contact API server when waiting for CSINode publishing: Unauthorized
该问题是kubelet所需要的证书未生成成功,可能的原因是token认证失败
如需重新生成新的证书,则需要删除以下文件-
rm -rf /etc/kubernetes/kubelet.kubeconfig
-
rm -rf /etc/kubernetes/ssl/kubelet.*
-
rm -rf /etc/kubernetes/ssl/kubelet-client-current.*
-
-
kubectl get nodes
查看node状态发现状态为NotReady
出现该问题的主要元素是kubelet的CSR请求没有自动审批,所以这里可以手动进行审批
查看所有的CSR请求kubectl get csr
删除所有的CSR请求kubectl get csr --no-headers=true | awk '{print $1}' | xargs kubectl delete csr
审批所有处于Pending状态的CSR请求kubectl get csr | awk '/Pending/ {print $1}' | xargs kubectl certificate approve
-
这里可能会出现很多奇奇怪怪的问题,比如少cp了配置文件等,一定要细心排查
部署kube-proxy
生成proxy客户端证书
创建用于访问apiserver的客户端证书请求文件
cat > apiserver-client-proxy-csr.json << "EOF"
{
"CN": "system:kube-proxy",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "GuangDong",
"L": "ShenZhen",
"O": "Kubernetes",
"OU": "System"
}
]
}
EOF
生成证书及私钥
cfssl gencert -ca=cluster-ca.pem -ca-key=cluster-ca-key.pem -config=ca-config.json -profile=client apiserver-client-proxy-csr.json | cfssljson -bare apiserver-client-proxy
创建kubeconfig文件
kubectl config set-cluster kubernetes --certificate-authority=apiserver-server-ca.pem --embed-certs=true --server=https://192.168.123.242:6443 --kubeconfig=kube-proxy.kubeconfig
kubectl config set-credentials kube-proxy --client-certificate=apiserver-client-proxy.pem --client-key=apiserver-client-proxy-key.pem --embed-certs=true --kubeconfig=kube-proxy.kubeconfig
kubectl config set-context default --cluster=kubernetes --user=kube-proxy --kubeconfig=kube-proxy.kubeconfig
kubectl config use-context default --kubeconfig=kube-proxy.kubeconfig
创建配置文件
cat > /etc/kubernetes/kube-proxy.yaml << "EOF"
apiVersion: kubeproxy.config.k8s.io/v1alpha1
bindAddress: 192.168.123.244
clientConnection:
kubeconfig: /etc/kubernetes/kube-proxy.kubeconfig
clusterCIDR: 172.18.0.0/16
healthzBindAddress: 192.168.123.244:10256
kind: KubeProxyConfiguration
metricsBindAddress: 192.168.123.244:10249
mode: "ipvs"
EOF
参数解释:
-
bindAddress:绑定到本机IP地址对应的网卡
-
clusterCIDR:Pod网段
-
mode:这里使用ipvs,原因在于它比iptables性能更高
创建服务配置文件
cat > /etc/systemd/system/kube-proxy.service << "EOF"
[Unit]
Description=Kubernetes Kube-Proxy Server
Documentation=https://github.com/kubernetes/kubernetes
After=network.target
[Service]
WorkingDirectory=/var/lib/kube-proxy
ExecStart=/usr/local/bin/kube-proxy \
--config=/etc/kubernetes/kube-proxy.yaml \
--alsologtostderr=true \
--logtostderr=false \
--log-dir=/var/log/kubernetes \
--v=2
Restart=on-failure
RestartSec=5
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
EOF
创建目录
mkdir -p /var/lib/kube-proxy
同步安装其他Master节点
所有的Master节点都需要安装kube-proxy,需要修改/etc/kubernetes/kube-proxy.yaml文件
-
复制证书
cp apiserver-client-proxy.pem apiserver-client-proxy-key.pem /etc/kubernetes/ssl/ scp apiserver-client-proxy.pem apiserver-client-proxy-key.pem i2:/etc/kubernetes/ssl/ scp apiserver-client-proxy.pem apiserver-client-proxy-key.pem i3:/etc/kubernetes/ssl/
-
复制配置文件
scp /etc/kubernetes/kube-proxy.yaml i2:/etc/kubernetes/ scp /etc/kubernetes/kube-proxy.yaml i3:/etc/kubernetes/ cp kube-proxy.kubeconfig /etc/kubernetes/ scp kube-proxy.kubeconfig i2:/etc/kubernetes/ scp kube-proxy.kubeconfig i3:/etc/kubernetes/
-
复制Unit服务文件
scp /etc/systemd/system/kube-proxy.service i2:/etc/systemd/system/ scp /etc/systemd/system/kube-proxy.service i3:/etc/systemd/system/
启动kube-proxy
systemctl daemon-reload
systemctl enable --now kube-proxy
systemctl status kube-proxy
安装Calico
安装Calico比较简单,只需要下载一个yaml配置文件,然后在kubernetes集群中创建相应的资源就可以了,如下:
curl https://raw.githubusercontent.com/projectcalico/calico/v3.26.0/manifests/calico.yaml -O
当然了,这里不能直接执行以上命令,需要将文件下载下来,改一下Pod网段
- name: CALICO_IPV4POOL_CIDR
value: "172.18.0.0/16"
执行kubectl apply -f calico.yaml
即可
安装CoreDNS
创建yaml资源清单文件
cat > coredns.yaml << "EOF"
apiVersion: v1
kind: ServiceAccount
metadata:
name: coredns
namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
labels:
kubernetes.io/bootstrapping: rbac-defaults
name: system:coredns
rules:
- apiGroups:
- ""
resources:
- endpoints
- services
- pods
- namespaces
verbs:
- list
- watch
- apiGroups:
- discovery.k8s.io
resources:
- endpointslices
verbs:
- list
- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
annotations:
rbac.authorization.kubernetes.io/autoupdate: "true"
labels:
kubernetes.io/bootstrapping: rbac-defaults
name: system:coredns
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: system:coredns
subjects:
- kind: ServiceAccount
name: coredns
namespace: kube-system
---
apiVersion: v1
kind: ConfigMap
metadata:
name: coredns
namespace: kube-system
data:
Corefile: |
.:53 {
errors
health {
lameduck 5s
}
ready
kubernetes cluster.local in-addr.arpa ip6.arpa {
fallthrough in-addr.arpa ip6.arpa
}
prometheus :9153
forward . /etc/resolv.conf {
max_concurrent 1000
}
cache 30
loop
reload
loadbalance
}
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: coredns
namespace: kube-system
labels:
k8s-app: kube-dns
kubernetes.io/name: "CoreDNS"
spec:
# replicas: not specified here:
# 1. Default is 1.
# 2. Will be tuned in real time if DNS horizontal auto-scaling is turned on.
strategy:
type: RollingUpdate
rollingUpdate:
maxUnavailable: 1
selector:
matchLabels:
k8s-app: kube-dns
template:
metadata:
labels:
k8s-app: kube-dns
spec:
priorityClassName: system-cluster-critical
serviceAccountName: coredns
tolerations:
- key: "CriticalAddonsOnly"
operator: "Exists"
nodeSelector:
kubernetes.io/os: linux
affinity:
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100
podAffinityTerm:
labelSelector:
matchExpressions:
- key: k8s-app
operator: In
values: ["kube-dns"]
topologyKey: kubernetes.io/hostname
containers:
- name: coredns
image: docker.io/coredns/coredns:1.8.4
imagePullPolicy: IfNotPresent
resources:
limits:
memory: 170Mi
requests:
cpu: 100m
memory: 70Mi
args: [ "-conf", "/etc/coredns/Corefile" ]
volumeMounts:
- name: config-volume
mountPath: /etc/coredns
readOnly: true
ports:
- containerPort: 53
name: dns
protocol: UDP
- containerPort: 53
name: dns-tcp
protocol: TCP
- containerPort: 9153
name: metrics
protocol: TCP
securityContext:
allowPrivilegeEscalation: false
capabilities:
add:
- NET_BIND_SERVICE
drop:
- all
readOnlyRootFilesystem: true
livenessProbe:
httpGet:
path: /health
port: 8080
scheme: HTTP
initialDelaySeconds: 60
timeoutSeconds: 5
successThreshold: 1
failureThreshold: 5
readinessProbe:
httpGet:
path: /ready
port: 8181
scheme: HTTP
dnsPolicy: Default
volumes:
- name: config-volume
configMap:
name: coredns
items:
- key: Corefile
path: Corefile
---
apiVersion: v1
kind: Service
metadata:
name: kube-dns
namespace: kube-system
annotations:
prometheus.io/port: "9153"
prometheus.io/scrape: "true"
labels:
k8s-app: kube-dns
kubernetes.io/cluster-service: "true"
kubernetes.io/name: "CoreDNS"
spec:
selector:
k8s-app: kube-dns
clusterIP: 10.96.0.2
ports:
- name: dns
port: 53
protocol: UDP
- name: dns-tcp
port: 53
protocol: TCP
- name: metrics
port: 9153
protocol: TCP
EOF
创建资源
kubectl apply -f coredns.yaml
使用NFS作为kubernetes持久化存储
在存储节点上安装nfs-utils
yum install -y nfs-utils
以上命令就安装好了nfs-server以及rpcbind
创建目录并授权
mkdir -p /opt/data/kubernetes
chmod -R 777 /opt/data/kubernetes
导出服务
/opt/data/kubernetes *(rw,no_root_squash,sync)
在/etc/exports文件中添加如上代码
exportfs -r
exportfs
启动服务
systemctl deamon-reload
systemctl enable --now nfs-server
systemctl enable --now rpcbind
kubernetes所有node节点上安装nfs-utils
在所有node节点上安装nfs-utils
创建RBAC资源文件
为使用NFS所需要用到的账户授权
cat > sc-rbac.yaml << "EOF"
apiVersion: v1
kind: ServiceAccount
metadata:
name: nfs-client-provisioner
# replace with namespace where provisioner is deployed
namespace: default
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: nfs-client-provisioner-runner
rules:
- apiGroups: [""]
resources: ["nodes"]
verbs: ["get", "list", "watch"]
- apiGroups: [""]
resources: ["persistentvolumes"]
verbs: ["get", "list", "watch", "create", "delete"]
- apiGroups: [""]
resources: ["persistentvolumeclaims"]
verbs: ["get", "list", "watch", "update"]
- apiGroups: ["storage.k8s.io"]
resources: ["storageclasses"]
verbs: ["get", "list", "watch"]
- apiGroups: [""]
resources: ["events"]
verbs: ["create", "update", "patch"]
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: run-nfs-client-provisioner
subjects:
- kind: ServiceAccount
name: nfs-client-provisioner
# replace with namespace where provisioner is deployed
namespace: default
roleRef:
kind: ClusterRole
name: nfs-client-provisioner-runner
apiGroup: rbac.authorization.k8s.io
---
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: leader-locking-nfs-client-provisioner
# replace with namespace where provisioner is deployed
namespace: default
rules:
- apiGroups: [""]
resources: ["endpoints"]
verbs: ["get", "list", "watch", "create", "update", "patch"]
---
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: leader-locking-nfs-client-provisioner
# replace with namespace where provisioner is deployed
namespace: default
subjects:
- kind: ServiceAccount
name: nfs-client-provisioner
# replace with namespace where provisioner is deployed
namespace: default
roleRef:
kind: Role
name: leader-locking-nfs-client-provisioner
apiGroup: rbac.authorization.k8s.io
EOF
执行kubectl apply -f sc-rbac.yaml
创建资源
nfs-client
cat > sc-deployment.yaml << "EOF"
kind: Deployment
apiVersion: apps/v1
metadata:
name: nfs-client-provisioner
spec:
replicas: 1
selector:
matchLabels:
app: nfs-client-provisioner
strategy:
type: Recreate
template:
metadata:
labels:
app: nfs-client-provisioner
spec:
serviceAccountName: nfs-client-provisioner
containers:
- name: nfs-client-provisioner
image: registry.k8s.io/sig-storage/nfs-subdir-external-provisioner:v4.0.2
# image: k8s.dockerproxy.com/sig-storage/nfs-subdir-external-provisioner:v4.0.2
volumeMounts:
- name: nfs-client-root
mountPath: /persistentvolumes
env:
- name: PROVISIONER_NAME
value: k8s-sigs.io/nfs-subdir-external-provisioner
- name: NFS_SERVER
# value: <YOUR NFS SERVER HOSTNAME>
value: 192.168.123.247
- name: NFS_PATH
# value: /var/nfs
value: /opt/data/kubernetes
volumes:
- name: nfs-client-root
nfs:
# server: <YOUR NFS SERVER HOSTNAME>
server: 192.168.123.247
path: /opt/data/kubernetes
EOF
执行kubectl apply -f sc-deployment.yaml
创建资源
StorageClass
cat > sc.yaml << "EOF"
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: nfs-client
provisioner: k8s-sigs.io/nfs-subdir-external-provisioner # or choose another name, must match deployment's env PROVISIONER_NAME'
parameters:
pathPattern: "${.PVC.namespace}/${.PVC.name}" # 此处使用 "${.PVC.namespace}/${.PVC.name}" 来使用pvc的名称作为nfs中真实目录名称
onDelete: delete
EOF
这里使用{.PVC.namespace}/{.PVC.name}
来自动创建命名,并且目录名称为命名空间下PVC的名称
执行kubectl apply -f sc.yaml
创建资源
安装Dashobard
wget https://raw.githubusercontent.com/kubernetes/dashboard/v2.7.0/aio/deploy/recommended.yaml
将资源清单文件下载下来,然后将Service的暴露方式改为NodePort,通常情况下会使用ingress作为统一入口,参考下一节,ingress代理dashboard
创建Token及服务账户
cat > dashboard-sa.yaml << "EOF"
apiVersion: v1
kind: ServiceAccount
metadata:
name: admin-user
namespace: kubernetes-dashboard
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: admin-user
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-admin
subjects:
- kind: ServiceAccount
name: admin-user
namespace: kubernetes-dashboard
EOF
创建一个具有更高权限的SA,然后再为该SA创建Token,在1.22版本之前,创建SA会自动的为其创建Token Secret,但在1.24版本后,所有请求Token的方式改为TokenRequest Api来完成,所有,需要通过如下命令来为SA创建Token,该Token是包含有效期的
kubectl create token -n kubernetes-dashboard admin-user
当然,我们也可以使用之前的方式为SA创建永久的Token
apiVersion: v1
kind: Secret
metadata:
namespace: kubernetes-dashboard
name: admin-user-secret
annotations:
kubernetes.io/service-account.name: admin-user
type: kubernetes.io/service-account-token
查看Token
kubectl describe secret admin-user-secret -n kubernetes-dashboard
安装Ingress Controller
ingress controller作为外部访问的入口,ingress作为配置controller的一种资源定义
wget https://raw.githubusercontent.com/kubernetes/ingress-nginx/controller-v1.8.0/deploy/static/provider/cloud/deploy.yaml
将配置文件下载下来,然后将Service类型改为NodePort,默认为LoadBalancer,另外还有个参数比较坑externalTrafficPolicy: Local
当将 externalTrafficPolicy
设置为 Local
时,Ingress Controller 会尝试将入站请求直接转发到与目标 Service 在同一节点上运行的 Pod。换句话说,它会将请求限制在本地节点,不会将请求转发到集群中其他节点上的 Pod。
如下:
# 省略
---
apiVersion: v1
kind: Service
metadata:
labels:
app.kubernetes.io/component: controller
app.kubernetes.io/instance: ingress-nginx
app.kubernetes.io/name: ingress-nginx
app.kubernetes.io/part-of: ingress-nginx
app.kubernetes.io/version: 1.8.0
name: ingress-nginx-controller
namespace: ingress-nginx
spec:
ipFamilies:
- IPv4
ipFamilyPolicy: SingleStack
ports:
- appProtocol: http
name: http
port: 80
protocol: TCP
targetPort: http
nodePort: 30080
- appProtocol: https
name: https
port: 443
protocol: TCP
targetPort: https
nodePort: 30443
selector:
app.kubernetes.io/component: controller
app.kubernetes.io/instance: ingress-nginx
app.kubernetes.io/name: ingress-nginx
type: NodePort
---
# 省略
IngressController负载均衡(NodePort端口映射)
IngressController已经安装好了,但是总感觉差点意思:
-
由于使用的是NodePort类型的Service,所有端口受限制,通常情况下,NodePort端口范围为30000-32767,然而IngressController作为应用入口,应该使用80/443端口
-
NodePort旨在每个Node节点上开发端口,这里需要做负载均衡才能保证服务的高可用
解决思路:
在集群外在加一层四层及以下代理,为什么这个代理要四层以下,我们可以假设一下,IngressController的作用是什么,就是反向代理,例如Nginx,主要通过主机名及path进行分发请求到对应的后端服务器,如果再添加一层7层代理,第一个是冗余,第二个是可能会应为重复的配置导致无法路由到理想的后端服务器,第三个,四层代理性能上比七层代理性能更改,因为它不需要通过应用成的解封包。
这里使用Nginx的四层代理对IngressController进行负载均衡,并且这里的Nginx是有主备节点的,并且通过Keepalived维护主备节点的切换,当然也可以使用HAPorxy以及LVS(LVS这里是用不了,前面已经说了),这里需要注意的是,要使用Nginx的四层代理,由于它的七层代理默认监听了80端口,所以,在四层代理IngressController需要监听80/443端口的时候会出现Nginx启动不了,但是通过nginx -t命令并没有发现任何异常,其实就是七层代理和四层代理的端口出现冲突,所以,这里就是用之前代理kube-apiserver的Nginx服务器做反向代理,这样的话,就实现了80/443端口转发到svc的3xxxx端口,并且实现了所有Node节点的负载均衡。
15.2 使用Ingress代理Dashboard
在使用Ingress代理Dashboard时需要注意以下几点:
-
默认的Dashboard已开启了安全认证,也就是会自动生成服务器证书,但是当我们需要在前端搭建反向代理服务的时候,并不需要dashboard为我们提供SSL证书,所以,这里开启不安全的端口用于内网代理服务器访问,在资源清单文件中修改Deployment管理的资源容器kubernetes-dashboard,添加一下两行命令行参数:
- --enable-insecure-login - --insecure-port=8080
-
将
--auto-generate-certificates
注释 -
暴露端口,将端口8443改为非安全监听端口8080
-
存活探针,将存活探针检查端口改为8080,并将https协议改为http
-
Service端口映射改为80映射到8080
-
生成TLS证书,这里需要使用可信的CA,可以使用云厂商的免费证书;如果没有随便使用哪个CA签名都会被认为是不安全的,所以,随便找个CA就可以了
cat > dashboard-server-csr.json <<"EOF" { "CN": "dashboard-server", "hosts": [ "127.0.0.1", "192.168.123.242", "43.153.194.72", "dashboard.k8s.dev-james.xyz" ], "key": { "algo": "rsa", "size": 2048 }, "names": [{ "C": "CN", "ST": "GuangDong", "L": "ShenZhen", "O": "Kubernetes", "OU": "System" }] } EOF
-
生成证书及私钥
cfssl gencert -ca=cluster-ca.pem -ca-key=cluster-ca-key.pem -config=ca-config.json -profile=server dashboard-server-csr.json | cfssljson -bare dashboard-server
-
创建证书secret
kubectl create secret tls dashboard-cert-secret --cert=dashboard-server.pem --key=dashboard-server-key.pem -n kubernetes-dashboard
-
在ingress中配置证书
这里所有的rule默认都是http协议,当配置了tls,指定hosts为某个域名则表示支持https访问
cat > dashboard-ingress.yaml <<"EOF" apiVersion: networking.k8s.io/v1 kind: Ingress metadata: namespace: kubernetes-dashboard name: dashboard-ingress spec: ingressClassName: nginx rules: - host: dashboard.k8s.dev-james.xyz http: paths: - path: / pathType: Prefix backend: service: name: kubernetes-dashboard port: number: 8080 tls: - hosts: - dashboard.k8s.dev-james.xyz secretName: dashboard-cert-secret EOF
-
通过域名就可以访问dashboard了
安装Metrics Server
wget https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/components.yaml
# 或者
wget https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/high-availability-1.21+.yaml
这里会出现很多很多的问题
- kubelet自签名证书的问题
E0908 15:28:39.751310 1 scraper.go:139] "Failed to scrape node" err="Get \"https://10.68.14.125:10250/stats/summary?only_cpu_and_memory=true\": x509: cannot validate certificate for 10.68.14.125 because it doesn't contain any IP SANs" node="scw-sharp-cray"
该问题主要原因是kubelet签发的证书是kubelet自签名证书,其中hosts字段只指定了主机名,而为指定ip,当metrics server访问kubelet获取指标信息时,验证kubelet身份发现该证书并不能用于验证当前IP,所有会出现该问题
解决方案:将kubelet.json配置文件中添加serverTLSBootstrap: true
参数,表示使用controller-manager为kubelet签发证书,该证书包含了主机名和当前节点IP地址。
- Mertrics Server没有内置KubeletCA的问题
E0622 10:35:51.062150 1 scraper.go:140] "Failed to scrape node" err="Get \"https://192.168.123.245:10250/metrics/resource\": x509: certificate signed by unknown authority" node="i2"
E0622 10:35:51.064470 1 scraper.go:140] "Failed to scrape node" err="Get \"https://192.168.123.246:10250/metrics/resource\": x509: certificate signed by unknown authority" node="i3"
E0622 10:35:51.066759 1 scraper.go:140] "Failed to scrape node" err="Get \"https://192.168.123.244:10250/metrics/resource\": x509: certificate signed by unknown authority" node="i1"
该问题主要是应为Metrics Server作为客户端访问kubelet时,因为Metrics Server没有kubelet的服务器根证书,无法验证kubelet-server的身份,所有这里创建一个configmap将签发kubelet-server的CA保存起来,挂载到Metrics Server中。
kubectl -n kube-system create configmap kubelet-server-ca --from-file=ca.pem=/etc/kubernetes/ssl/apiserver-client-ca.pem -o yaml
将configmap挂载到metrics service的容器中
containers:
- args:
- --cert-dir=/tmp
- --secure-port=4443
- --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
- --kubelet-use-node-status-port
- --metric-resolution=15s
- --kubelet-certificate-authority=/ca/ca.pem
# ...
volumeMounts:
- mountPath: /tmp
name: tmp-dir
- mountPath: /ca
name: ca-dir
# ...
volumes:
- emptyDir: {}
name: tmp-dir
- name: ca-dir
configMap:
name: kubelet-server-ca
如上,添加--kubelet-certificate-authority=/ca/ca.pem
- 没有启用API聚合导致的问题
configmap_cafile_content.go:242] key failed with : missing content for CA bundle "client-ca::kube-system::extension-apiserver-authentication::requestheader-client-ca-file"
该问题是Metrics Server提供了一个扩展API,但是Api Server并没有开启API聚合功能,所有Metrics在访问Apiserver时出现问题,API聚合的运行流程是,当客户端需要访问扩展API时,首先会经过ApiServer,然后由ApiServer将请求转发到扩展ApiServer,然而,ApiServer和扩展ApiServer之间也需要保证请求的安全性,所以,这里也需要证书,后续扩展ApiServer需要验证等操作会从kube-system命名空间中找到extension-apiserver-authentication的configmap中的CA证书进行验证登操作。
解决方案:
创建一个用于扩展ApiServer的CA证书
cat > extra-apiserver-client-ca-csr.json <<"EOF"
{
"CN": "extra-apiserver-client-ca",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "GuangDong",
"L": "ShenZhen",
"O": "Kubernetes",
"OU": "System"
}
],
"ca": {
"expiry": "87600h"
}
}
EOF
生成CA证书及私钥
cfssl gencert -initca extra-apiserver-client-ca-csr.json | cfssljson -bare extra-apiserver-client-ca
通过extra-apiserver-client-ca创建客户端证书
cat > extra-proxy-client-csr.json <<"EOF"
{
"CN": "aggregator",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [{
"C": "CN",
"ST": "GuangDong",
"L": "ShenZhen",
"O": "system:masters",
"OU": "System"
}]
}
EOF
生成客户端证书及私钥
cfssl gencert -ca=extra-apiserver-client-ca.pem -ca-key=extra-apiserver-client-ca-key.pem -config=ca-config.json -profile=client extra-proxy-client-csr.json | cfssljson -bare extra-proxy-client
修改kube-apiserver.conf配置文件,添加如下配置:
--requestheader-client-ca-file=/etc/kubernetes/ssl/extra-apiserver-client-ca.pem \
--requestheader-allowed-names=aggregator \
--requestheader-extra-headers-prefix=X-Remote-Extra- \
--requestheader-group-headers=X-Remote-Group \
--requestheader-username-headers=X-Remote-User \
--proxy-client-cert-file=/etc/kubernetes/ssl/extra-proxy-client.pem \
--proxy-client-key-file=/etc/kubernetes/ssl/extra-proxy-client-key.pem \
另外,如果当前节点没有安装kube-proxy(也就是,当前主节点不作为node节点),需要额外添加参数--enable-aggregator-routing=true
详情参考:https://kubernetes.io/zh-cn/docs/tasks/extend-kubernetes/configure-aggregation-layer/
重启kube-apiserver
systemctl daemon-reload
systemctl restart kube-apiserver
常见问题
-
当apiserver需要进入Pod执行命令或者查看日志时,如果出现Forbidden (user=kubelet-client-apiserver, verb=create, resource=nodes, subresource=proxy)
需要添加一个clusterrolebinding,为kubelet-client-apiserver授权kubectl create clusterrolebinding kubelet-client-apiserver --clusterrole=cluster-admin --user=kubelet-client-apiserver
因为apiserver访问kubelet所使用的证书是kubelet client CA颁发的,而CN指定的名称为kubelet-client-apiserver,所以这里将该用户绑定到cluster-admin的ClusterRole上,就能拥有集群管理员的权限对kubelet中的资源进行访问 -
Calico和kube-proxy的作用及关系
Calico解决pod网络地址的分配以及pod之间的网络互通问题
kube-proxy解决Service负载均衡,实现原理是根据ETCD配置创建ipvs规则,实际在Service NodePort模式中,Service并不接管流量出入,kube-proxy会根据配置直接将后端pod的IP作为当前服务的ip列表实现负载均衡
每多一个Service就会在kube-ipvs0虚拟网卡中添加一个IP地址 -
无法下载image: gcr.io/google-samples/xtrabackup:1.0
也可以使用 lank8s.cn,他们的对应关系 k8s.gcr.io –> lank8s.cn,gcr.io –> gcr.lank8s.cn
-
每个命名空间都有一个默认的Service Account账户,名称为default,通常被注入到Pod里面供其访问ApiServer使用,默认情况下,pod中使用的default ServiceAccount的token被挂载到容器中的
/var/run/secrets/kubernetes.io/serviceaccount/token
目录中,当然了,这里的token已经是采用TokenRequest请求的临时token,这一令牌默认会在一个小时之后或者 Pod 被删除时过期;所有default默认的Service Account并没有自动创建Secret